A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass

Main Article Content

Nawal H. Khudhair
Kareem A. Jasim

Abstract

     This research calculated the effect of partial replacement of Trillium with tin by weight ratios x=0, 5, 10, 15, and 20 of the weight of manufactured samples on the thermal conductivity coefficient of Se60Te40-xSnx chalcogenide glasses. The thermal conductivity coefficient of the samples was calculated using a disk- Lee. The results showed that increasing the concentration of tin improves the thermal insulation ability by decreasing the thermal conductivity value and then determining the optimal weight ratios at which a large thermal insulation is obtained.


 The electrical resistivity as a function of temperature was studied. The electrical resistivity (rd.c) was calculated as a function of temperature for all samples, using two-point probe techniques in the dark electrical resistivity measurements of Se60Te40-xSnx glasses for all values made in the temperature range 303-455 K. The electrical resistivity was found that it depends on the change in Tin addition, the temperature is clearly affected by the increase in the concentration of tin in the alloy. The electrical resistance increases when the concentration of Tin increase of Se60Te40-xSnx

Article Details

How to Cite
A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(1), 149-157. https://doi.org/10.30526/36.1.2892
Section
Physics

How to Cite

A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(1), 149-157. https://doi.org/10.30526/36.1.2892

Publication Dates

References

Kumar, S.; Hussain, M.; zulfequar, M. Optical and other physical characteristics of amorphous Se-Te-Sn alloys, physica B. 2006, 371, 193.

Cohen, M. H; Fritzche, H.; Ovshlnsky, S. P. Simple Band Model for Amorphous Semiconductor alloys, Phy. Rev Latter, 1969, 22, 1065.

Rashad, M.; Darwish, A. A.; Atttia, A. A. Physical and Dielectric properties of Sn doped Se-Te Glassy system, J. Non-cryst. Soilds. 2017, 470, 1.

Tanaka, K. Electrical transport of a-Se87Te13 nanorodes, J Experimental Nanoscience, 2011, 6, 337.

Jasim, K. A.; Naser, R. F. The Effects of micro Aluminum fillers In Epoxy resin on the thermal conductivity, Journal of Physics: Conf. Series. 2018, 1003, 9, 012082.

Ellote, S. R. Electrical conduction mechanism in Se90-xTe5Sn5Inx (x=0, 3,6 and 9) multi-component glassy alloys, AIP Advances. 2015,5, 087164, 1-7.

Mohammed, L. A.; Jasim, K, A. Improvement the Superconducting properties of TlBa2 Ca2 Cu3-xNix O9-δ superconducting compound by partial substitution of copper with nickel oxide, Energy Procedia. 2019, 157, 135–242.

Chander, R.; Thangaraj, R. Electrical conduction mechanism in Se90-xTe5Sn5Inx (x=0, 3,6 and 9) multi-component glassy alloys, AIP Advances. 2015, 5, 087164, 1-7.

Cohen, M. H.; Fritzsche, H.; &Ovshinsky, S. R. Simple band model for amorphous semiconducting alloys. . Physical Review Letters, 1969, 1065.

Mott, N. F.; Davis, E. A. Electronic processes in non-crystalline materials. Oxford university press, 2012,591.

Hamid , A, A.; Kareem, A.; Ali, K. J. Study the partial substitution for Sr at the Ba on the properties of Tl1.6Hg0.4Ba2-ySry Ca2 Cu3 O10δ5 superconductors, IOP Conf. Series: Materials Science and Engineering. 2020, 871, 012079.

Ali, K. J. Superconducting Properties of Hg0.8Cu0.15Sb0.05Ba2Ca2Cu3O8+δ Ceramic with Controlling Sintering Conditions, Journal of superconductivity and novelmagnetism.2012. 25, 6 , 1713-1717,

Subhi, R. A. Ali, K. J. Dependence the microstructure specifications of earth metal lanthanum La substituted Bi2Ba2CaCu2–XLaXO8+δ on cation vacancies,AIMS Materials Science. 2022, 8, 4,550–559.

Liu, Y. K.; Zapien, J. A.; Shan, Y. Y.; Geng, C.Y.; Lee, C. S. Wavelength-conyrolled Lassing in ZnxCdl-xS Single-crystal Nanoribbons, Adv. Mater. 2005, 17,11, 1372-1377. https://dio.org/10.1002/adma.200401606.

Kadhim, B. B.; Risan, R. H.; Shaban, A. H.; Jasim, K. A. Electrical characteristics of nickel/epoxy-Unsaturated polyester blend nanocomposites. In. AIP Publishing LLC. AIP Conference Proceedings, 2019,20062.

Khan, Z. H.; Salah N.; Habbib, S. Electrical transport of a-Se87Te13 nanorodes, J Experimental Nanoscience. 2011, 6, 337.

Kareem, A. J.; Rihab, N. F. The Effects of Micro Aluminum fillers Epoxy resin on the thermal conductivity. Ibn AL-Haithem 1st. International scientific conference. 2017.

Indra, S. R.; Sunil, K. R. K.; Prabhakar, S.; Kedarsingh, C. Electrical conduction mechanism in Se90-xTe5Sn5Inx (x=0, 3,6 and 9) multi-component glassy alloys, AIP Advances. 2015, 5, 087164, 1-7.

Aqeel, N. A.; Ahlam, A.; Riyadh, K. C.; Kareem, A. J.; Auday, H. S. Calculating the Mechanisms of Electrical Conductivity and Energy Density of States for Se85Te10Sn5-xInx Glasses Materials. Journal of Green Engineering, 2020,5487–5503

Chillab, R. K.; Jahil, S. S.; Wadi, K. M.; Jasim, K. A.; Shaban, A. H. Fabrication of Ge30Te70-xSbx Glasses Alloys and Studying the Effect of Partial Substitution on DC Electrical Energy Parameters. In Key Engineering Materials, 2021,163-171.