An Investigation into the Effects of Ubiquinone on Inflammation, Diabetic Myopathy and Endotheliopathy, and CBC Parameters in Diabetic Rats
Main Article Content
Abstract
Oxidative stress and inflammation are connected to the development of metabolic disorders, such as diabetes. Diabetic-related oxidative stress is caused by the overproduction of oxidative-free radicals, which have been implicated in the mechanism of inflammation and damage to tissues. Our study aimed to investigate the effects of ubiquinone treatment on serum indicators of oxidative stress (malondialdehyde (MDA)), inflammation (interleukin 6 (IL-6)), vascular homeostasis (nitric oxide (NO)), and myopathy (myoglobin (MB)) in addition to measuring blood components parameters in streptozotocin-induced diabetic rats. Rats were separated into three groups; negative control group (N), diabetic control group (D), and ubiquinone-treated diabetic group (T). After 21 days, the blood and serum samples were taken to evaluate fasting blood glucose (FBG), MDA, IL-6, NO, MB, and hematological parameters. In hyperglycemic rats, the levels of FBG and serum levels of IL-6, MDA, and MB significantly increased, while NO levels decreased. Hyperglycemic condition significantly lowered the count of WBC (P = 0.0098) but insignificantly decreased values of platelets and RBC. Ubiquinone treatment significantly reduced blood glucose, IL-6, MDA, and MB levels in diabetic rats and raised NO levels. The effects of ubiquinone on WBC (P = 0.648), RBC (P = 0.001), and (P = 0.398) were insignificant, and only minor variations in WBC and platelet levels were observed. Our data support that ubiquinone supplementation could reduce proinflammation, oxidative stress, and myopathy markers and elevate NO levels in diabetic rats. The current study indicates ubiquinone may positively impact diabetic complications; however, additional research is required to determine its therapeutic benefit when added to standard diabetes treatment.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
References
Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J. Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes research and clinical practice, 2010,87(3),293-301 https://doi.org/10.1016/j.diabres.2010.01.026
World Health, O. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization, 2011. Available from: https://apps.who.int/iris/handle/10665/44579.
Selvin, E.; Coresh, J.; Golden, S. H.; Boland, L. L.; Brancati, F. L.. Steffes, M. W. Glycemic control, atherosclerosis, and risk factors for cardiovascular disease in individuals with diabetes: the atherosclerosis risk in communities study. Diabetes Care, 2005,28(8),1965-73 https://doi.org/10.2337/diacare.28.8.1965
Fowler, M. J. Microvascular and macrovascular complications of diabetes. Clinical diabetes, 2008,26(2),77-82 https://doi.org/10.2337/diaclin.26.2.77
Severino, P.; D’Amato, A.; Netti, L.; Pucci, M.; Infusino, F.; Maestrini, V.; Mancone, M.. Fedele, F. Myocardial Ischemia and Diabetes Mellitus: Role of Oxidative Stress in the Connection between Cardiac Metabolism and Coronary Blood Flow. Journal of diabetes research, 2019,2019, 9489826 https://doi.org/10.1155/2019/9489826
Ates, O.; Bilen, H.; Keles, S.; Alp, H. H.; Keleş, M. S.; Yıldırım, K.; Ondaş, O.; Pınar, L. C.;Civelekler, M.. Baykal, O. Plasma coenzyme Q10 levels in type 2 diabetic patients with retinopathy. Int J Ophthalmol, 2013,6(5),675-9.Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808920/
Giacco, F.. Brownlee, M. Oxidative stress and diabetic complications. Circulation research, 2010,107(9),1058-70 https://doi.org/10.1161/CIRCRESAHA.110.223545
Fernandes, S. M.; Cordeiro, P. M.; Watanabe, M.; Fonseca, C. D. d.. Vattimo, M. d. F. F. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Archives of endocrinology and metabolism, 2016,60,443-9 https://doi.org/10.1590/2359-3997000000188
M Santos, J.; Mohammad, G.; Zhong, Q.. A Kowluru, R. Diabetic retinopathy, superoxide damage and antioxidants. Current pharmaceutical biotechnology, 2011,12(3),352-61 https://doi.org/10.2174/138920111794480507
Yang, J.; Lane, P. H.; Pollock, J. S.. Carmines, P. K. Protein kinase C-dependent NAD (P) H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb. Hypertension, 2010,55(2),468-73 https://doi.org/10.1161/HYPERTENSIONAHA.109.145714
Sies, H.; Berndt, C.. Jones, D. P. Oxidative stress. Annual review of biochemistry. 2017,86,715-48 https://doi.org/10.1146/annurev-biochem-061516-045037
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.. Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017,2017,8416763 https://doi.org/10.1155/2017/8416763
Alshehri, A. M. Metabolic syndrome and cardiovascular risk. Journal of Family and Community Medicine, 2010,17(2),73.Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3045098/
Dos Santos, J. M.; De Oliveira, D. S.; Moreli, M. L.. Benite-Ribeiro, S. A. The role of mitochondrial DNA damage at skeletal muscle oxidative stress on the development of type 2
diabetes. Molecular and Cellular Biochemistry. 2018,449(1),251-5
https://doi.org/10.1007/s11010-018-3361-5
Dos Santos, J. M.; Tewari, S.. Mendes, R. H. The Role of Oxidative Stress in the Development of Diabetes Mellitus and Its Complications. Journal of diabetes research, 2019,2019,4189813
https://doi.org/10.1155/2019/4189813
Lamb, R.. Goldstein, B. Modulating an oxidative‐inflammatory cascade: potential new treatment strategy for improving glucose metabolism, insulin resistance, and vascular function. International journal of clinical practice. 2008,62(7),1087-95 https://doi.org/10.1111/j.1742-1241.2008.01789.x
Wojcik, M.; Burzynska-Pedziwiatr, I.. Wozniak, L. A review of natural and synthetic antioxidants important for health and longevity. Current Medicinal Chemistry, 2010,17(28),3262-88 https://doi.org/10.2174/092986710792231950
Zhang, J.; Yuan, K.; Zhou, W.-l.; Zhou, J.. Yang, P. Studies on the active components andantioxidant activities of the extracts of Mimosa pudica Linn. from southern China.Pharmacognosy magazin, 2011,7(25),35 https://doi.org/10.4103%2F0973-1296.75899
Makni, M.; Sefi, M.; Fetoui, H.; Garoui, E. M.; Gargouri, N. K.; Boudawara, T.. Zeghal, N. Flax and Pumpkin seeds mixture ameliorates diabetic nephropathy in rats. Food and Chemical Toxicology, 2010,48(8-9),2407-12 https://doi.org/10.1016/j.fct.2010.05.079
Crane, F. L. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition, 2001,20(6),591-8 https://doi.org/10.1080/07315724.2001.10719063
Noh, Y.; Kim, K.; Shim, M.; Choi, S.; Choi, S.; Ellisman, M.; Weinreb, R.; Perkins, G.. Ju, W. Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell death & disease. 2013,4(10),e820-e https://doi.org/10.1038/cddis.2013.341
Bhagavan, H. N.. Chopra, R. K. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free radical research. 2006,40(5),445-53
https://doi.org/10.1080/10715760600617843 .
Shekelle, P.; Morton, S.. Hardy, M. Effect of supplemental antioxidants vitamin C, vitamin E, and coenzyme Q10 for the prevention and treatment of cardiovascular disease. Evidence
report/technology assessment (Summary). 2003,(83),1-3.Available from:
https://europepmc.org/books/nbk37059 .
Zduńska, K.; Dana, A.; Kolodziejczak, A.. Rotsztejn, H. Antioxidant properties of ferulic acid
and its possible application. Skin pharmacology and physiology. 2018,31(6),332-6
https://doi.org/10.1159/000491755 .
Baschiera, E.; Sorrentino, U.; Calderan, C.; Desbats, M. A.. Salviati, L. The multiple roles of
coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q
deficiency. Free Radical Biology and Medicine, 2021,166,277-86.Available from:
https://www.sciencedirect.com/science/article/pii/S0891584921001374 .
Rodríguez-Carrizalez, A. D.; Castellanos-González, J. A.; Martínez-Romero, E. C.; Miller-
Arrevillaga, G.; Pacheco-Moisés, F. P.; Román-Pintos, L. M.. Miranda-Díaz, A. G. The effect of
ubiquinone and combined antioxidant therapy on oxidative stress markers in non-
proliferative diabetic retinopathy: a phase IIa, randomized, double-blind, and placebo-
controlled study. Redox Report. 2016,21(4),155-63
https://doi.org/10.1179/1351000215Y.0000000040 .
Lee, B.-J.; Huang, Y.-C.; Chen, S.-J.. Lin, P.-T. Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition. 2012,28(3),250-5 https://doi.org/10.1016/j.nut.2011.06.004
Del Rio, D.; Stewart, A. J.. Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, metabolism and cardiovascular diseases. 2005,15(4),316-28 https://doi.org/10.1016/j.numecd.2005.05.003
Jain, S. K.; Kannan, K.; Lim, G.; Matthews-Greer, J.; McVie, R.. Bocchini Jr, J. A. Elevated blood interleukin-6 levels in hyperketonemic type 1 diabetic patients and secretion by acetoacetate-treated cultured U937 monocytes. Diabetes Care. 2003,26(7),2139-43 https://doi.org/10.2337/diacare.26.7.2139
Drzewoski, J. Gliclazide, inflammation and atherosclerosis. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents). 2008,7(3),224-30 https://doi.org/10.2174/187152308785699263
Naseem, K. M. The role of nitric oxide in cardiovascular diseases. Molecular aspects of medicine. 2005,26(1-2),33-65 https://doi.org/10.1016/j.mam.2004.09.003
Kashyap, S. R.; Roman, L. J.; Lamont, J.; Masters, B. S. S.; Bajaj, M.; Suraamornkul, S.; Belfort, R.; Berria, R.; Kellogg Jr, D. L.. Liu, Y. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. The Journal of Clinical Endocrinology & Metabolism. 2005,90(2),1100-5 https://doi.org/10.1210/jc.2004-0745
Kunitomo, M.; Yamaguchi, Y.; Kagota, S.. Otsubo, K. Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome. Journal of pharmacological sciences. 2008,0806040111- https://doi.org/10.1254/jphs.FP0072365
Turunen, M.; Appelkvist, E.-L.; Sindelar, P.. Dallner, G. Blood concentration of coenzyme Q10 increases in rats when esterified forms are administered. The Journal of nutrition. 1999,129(12),2113-8.Available from: https://academic.oup.com/jn/article/129/12/2113/4722094
Kim, H.-N.; Jeon, D.-G.; Lim, Y.. Jang, I.-S. The effects of coenzyme Q 10 supplement on blood lipid indices and hepatic antioxidant defense system in SD rats fed a high cholesterol diet. Laboratory animal research. 2019,35(1),1-8 https://doi.org/10.1186/s42826-019-0013-1
Ibrahim, W. H.; Bhagavan, H. N.; Chopra, R. K.. Chow, C. K. Dietary coenzyme Q10 and vitamin E alter the status of these compounds in rat tissues and mitochondria. The Journal of nutrition. 2000,130(9),2343-8 https://doi.org/10.1093/jn/130.9.2343
Hidaka, T.; Fujii, K.; Funahashi, I.; Fukutomi, N.. Hosoe, K. Safety assessment of coenzyme Q10 (CoQ10). Biofactors. 2008,32(1‐4),199-208 https://doi.org/10.1002/biof.5520320124
Ganda, O. P.; Rossini, A. A.. Like, A. A. Studies on streptozotocin diabetes. Diabetes. 1976,25(7),595-603 https://doi.org/10.2337/diab.25.7.595
Arison, R.; Ciaccio, E.; Glitzer, M.; Cassaro, J.. Pruss, M. Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes. 1967,16(1),51-6 https://doi.org/10.2337/diab.16.1.51
Brøndum, E.; Nilsson, H.. Aalkjaer, C. Functional abnormalities in isolated arteries from Goto-Kakizaki and streptozotocin-treated diabetic rat models. Hormone and metabolic research. 2005,37(S1),5660.Available.from:https://www.thiemeconnect.com/products/ejournals/html/10.1055/s-2005-861370
Furman, B. L. Streptozotocin‐induced diabetic models in mice and rats. Current protocols in pharmacology. 2015,70(1),5.47. 1-5.. 20 https://doi.org/10.1002/0471141755.ph0547s70
Damasceno, D. C.; Netto, A. O.; Iessi, I. L.; Gallego, F. Q.; Corvino, S. B.; Dallaqua, B.; Sinzato, Y. K.; Bueno, A.; Calderon, I. M. P.. Rudge, M. V. C. Streptozotocin-Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes. BioMed research international. 2014;2014:819065 https://doi.org/10.1155/2014/819065
Li, F.; You, M.; Li, S.; Hu, J.; Liu, C.; Gong, Y.; Yang, H.. Xu, F. based point-of-care immunoassays: Recent advances and emerging trends. Biotechnology advances. 202039,107442 https://doi.org/10.1016/j.biotechadv.2019.107442
Zhao, Y.. Ying; L. R&D, Manufacture, and Market. In: Song H.. Yao J. e., editors. In Vitro Diagnostic Industry in China. Singapore: Springer Singapore; 2021, 147-60 https://doi.org/10.1007/978-981-16-2316-5_14
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001,414(6865),813-20 https://doi.org/10.1038/414813a
Tiwari, B. K.; Pandey, K. B.; Abidi, A. B.. Rizvi, S. I. Markers of Oxidative Stress during Diabetes Mellitus. Journal of biomarkers, 2013;2013:378790 https://doi.org/10.1155/2013/378790
Wu, J.. Yan; L.-J. Streptozotocin-induced type 1 diabetes in rodents as a model for studying mitochondrial mechanisms of diabetic β cell glucotoxicity. Diabetes, metabolic syndrome and obesity: targets and therapy. 2015,8,181 https://doi.org/10.2147%2FDMSO.S82272
Ahmadvand, H. Effects of coenzyme Q10 on hemoglobin A1C, serum urea and creatinine in alloxan-induced type 1 diabetic rats. Iranian Journal of Pharmacology and Therapeutics. 2012,11(2),64-0.Available from: http://ijpt.iums.ac.ir/article-1-245-en.html
Luo, K.; Yu, J. H.; Quan, Y.; Shin, Y. J.; Lee, K. E.; Kim, H. L.; Ko, E. J.; Chung, B. H.; Lim, S. W.. Yang, C. W. Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Scientific Reports. 2019,9(1),1-12 https://doi.org/10.1038/s41598-019-44475-x
Modi, K.; Santani, D.; Goyal, R.. Bhatt, P. Effect of coenzyme Q10 on catalase activity and other antioxidant parameters in streptozotocin-induced diabetic rats. Biological trace element research. 2006,109(1),25-33 https://doi.org/10.1385/BTER:109:1:025
Hodgson, J.; Watts, G.; Playford, D.; Burke, V.. Croft, K. Coenzyme Q10 improves blood pressure and glycaemic control: a controlled trial in subjects with type 2 diabetes. European journal of clinical nutrition, 2002,56(11),1137-42 https://doi.org/10.1038/sj.ejcn.1601464
Rauscher, F. M.; Sanders, R. A.. Watkins III, J. B. Effects of coenzyme Q10 treatment on antioxidant pathways in normal and streptozotocin‐induced diabetic rats. Journal of biochemical and molecular toxicology, 2001,15(1),41-6 https://doi.org/10.1002/1099-0461(2001)15:1%3C41::AID-JBT5%3E3.0.CO;2-Z
Cui, X.-p.; Li, B.-y.; Gao, H.-q.; Wei, N.; Wang, W.-l.. Lu, M. Effects of grape seed proanthocyanidin extracts on peripheral nerves in streptozocin-induced diabetic rats. Journal of Nutritional Science and Vitaminology, 2008,54(4),321-8 https://doi.org/10.3177/jnsv.54.321
Samimi, F.; Baazm, M.; Eftekhar, E.; Rajabi, S.; Goodarzi, M. T.. Mashayekhi, F. J. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Research in Pharmaceutical Sciences. 2019,14(6),524 https://doi.org/10.4103%2F1735-5362.272561
Stadler, K.; Bonini, M. G.; Dallas, S.; Jiang, J.; Radi, R.; Mason, R. P.. Kadiiska, M. B. Involvement of inducible nitric oxide synthase in hydroxyl radical-mediated lipid peroxidation in streptozotocin-induced diabetes. Free Radical Biology and Medicine. 2008,45(6),866-74 https://doi.org/10.1016/j.freeradbiomed.2008.06.023
Hajizadeh, M. R.; Eftekhar, E.; Zal, F.; Jafarian, A.. Mostafavi-Pour, Z. Mulberry leaf extract attenuates oxidative stress-mediated testosterone depletion in streptozotocin-induced diabetic rats. Iranian journal of medical sciences, 2014,39(2),123.Available from: http://ijms.sums.ac.ir/article_39595.html
Ahmadvand, H.; Tavafi, M.. Khosrowbeygi, A. Amelioration of altered antioxidant enzymes activity and glomerulosclerosis by coenzyme Q10 in alloxan-induced diabetic rats. Journal of Diabetes and its Complications, 2012,26(6),476-82 https://doi.org/10.1016/j.jdiacomp.2012.06.004
Rizwan, H.; Pal, S.; Sabnam, S.. Pal, A. High glucose augments ROS generation regulates mitochondrial dysfunction and apoptosis via stress signalling cascades in keratinocytes. Life sciences. 2020,241,117148 https://doi.org/10.1016/j.lfs.2019.117148
Incalza, M. A.; D'Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.. Giorgino, F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular pharmacology. 2018,100,1-19 https://doi.org/10.1016/j.vph.2017.05.005
Thongnak, L.; Pongchaidecha, A.; Jaikumkao, K.; Chatsudthipong, V.; Chattipakorn, N.. Lungkaphin, A. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats. Scientific Reports. 2017,7(1),1-11 https://doi.org/10.1038/s41598-017-13206-5
Raghavan, S.; Subramaniyam, G.. Shanmugam, N. Proinflammatory effects of malondialdehyde in lymphocytes. Journal of leukocyte biology, 2012,92(5),1055-67 https://doi.org/10.1189/jlb.1211617
Ott, C.; Jacobs, K.; Haucke, E.; Santos, A. N.; Grune, T.. Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biology. 2014,2,411-29 https://doi.org/10.1016/j.redox.2013.12.016
Pickering, R. J.; Rosado, C. J.; Sharma, A.; Buksh, S.; Tate, M.. de Haan, J. B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clinical & translational immunology. 2018,7(4),e1016 https://doi.org/10.1002/cti2.1016
Rahimi-Madiseh, M.; Malekpour-Tehrani, A.; Bahmani, M.. Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pacific journal of tropical medicine, 2016,9(9),825-31 https://doi.org/10.1016/j.apjtm.2016.07.001
Ohtsu, A.; Shibutani, Y.; Seno, K.; Iwata, H.; Kuwayama, T.. Shirasuna, K. Advanced glycation end products and lipopolysaccharides stimulate interleukin‑6 secretion via the RAGE/TLR4‑NF‑κB‑ROS pathways and resveratrol attenuates these inflammatory responses in mouse macrophages. Experimental and therapeutic medicine. 2017,14(5),4363-70 https://doi.org/10.3892/etm.2017.5045
Taniguchi, K.; Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nature Reviews Immunology. 2018,18(5),309-24
Maheshwari, R. A.; Parmar, G. R.; Hinsu, D.; Seth, A. K.. Balaraman, R. Novel therapeutic intervention of coenzyme Q10 and its combination with pioglitazone on the mRNA expression level of adipocytokines in diabetic rats. Life sciences. 2020,258,118155 https://doi.org/10.1016/j.lfs.2020.118155
Mezzano, S.; Aros, C.; Droguett, A.; Burgos, M. E.; Ardiles, L.; Flores, C.; Schneider, H.; Ruiz-Ortega, M.. Egido, J. NF-κB activation and overexpression of regulated genes in human diabetic nephropathy. Nephrology dialysis transplantation. 2004,19(10),2505-12 https://doi.org/10.1093/ndt/gfh207
Navarro-Gonzalez, J. F.. Mora-Fernandez, C. The role of inflammatory cytokines in diabetic nephropathy. Journal of the American Society of Nephrology, 2008,19(3),433-42 https://doi.org/10.1681/ASN.2007091048
Navarro, J. F.. Mora, C. Role of inflammation in diabetic complications. Nephrology dialysis transplantation. 2005,20(12),2601-4 https://doi.org/10.1093/ndt/gfi155
Prabhakar, O. Cerebroprotective effect of resveratrol through antioxidant and anti-inflammatory effects in diabetic rats. Naunyn-Schmiedeberg's archives of pharmacology. 2013,386(8),705-10 https://doi.org/10.1007/s00210-013-0871-2
Ojo, O. A.; Amanze, J. C.; Oni, A. I.; Grant, S.; Iyobhebhe, M.; Elebiyo, T. C.; Rotimi, D.; Asogwa, N. T.; Oyinloye, B. E.. Ajiboye, B. O. Antidiabetic activity of avocado seeds (Persea americana Mill.) in diabetic rats via activation of PI3K/AKT signaling pathway. Scientific Reports. 2022,12(1),1-17 https://doi.org/10.1038/s41598-022-07015-8
Lacasa, D. l.; Taleb, S.; Keophiphath, M.; Miranville, A.. Clement, K. Macrophage-Secreted Factors Impair Human Adipogenesis: Involvement of Proinflammatory State in Preadipocytes. Endocrinology. 2007,148(2),868-77 https://doi.org/10.1210/en.2006-0687
Suresh, Y.. Das, U. N. Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins, leukotrienes and essential fatty acids. 2006,74(3),199-213 https://doi.org/10.1016/j.plefa.2005.11.006
Anwar, M.; Abd El-Moniem, M.; Megahed, H. A.; EL-Toukhy, S. E.; Mohammed, N. A.. Youness, E. R. Effect of coenzyme Q10 supplementation on markers of oxidative stress in streptozotocin induced diabetic rats. Journal of Applied Pharmaceutical Science, 2014,4(6),009-15 http://dx.doi.org/10.7324/JAPS.2014.40602
Suresh, V.. Reddy, A. Dysregulation of nitric oxide synthases during early and late pathophysiological conditions of diabetes mellitus leads to amassing of microvascular impedement. Journal of diabetes & metabolic disorders. 2021,20(1),989-1002 https://doi.org/10.1007/s40200-021-00799-y
Ozkul, A.; Ayhan, M.; Yenisey, C.; Akyol, A.; Guney, E.. Ergin, F. A. The role of oxidative stress and endothelial injury in diabetic neuropathy and neuropathic pain. Neuroendocrinology Letters. 2010,31(2),261-4.Available from: https://www.nel.edu/the-role-of-oxidative-stress-and-endothelial-injury-in-diabetic-neuropathy-and-neuropathic-pain-1080
Rehman, K.; Khan, I. I.; Akash, M. S. H.; Jabeen, K.. Haider, K. Naringenin downregulates inflammation‐mediated nitric oxide overproduction and potentiates endogenous antioxidant status during hyperglycemia. Journal of Food Biochemistry, 2020,44(10),e13422 https://doi.org/10.1111/jfbc.13422
Tsai, K.-L.; Huang, Y.-H.; Kao, C.-L.; Yang, D.-M.; Lee, H.-C.; Chou, H.-Y.; Chen, Y.-C.; Chiou, G.-Y.; Chen, L.-H.. Yang, Y.-P. A novel mechanism of coenzyme Q10 protects against human endothelial cells from oxidative stress-induced injury by modulating NO-related pathways. The Journal of nutritional biochemistry, 2012,23(5),458-68 https://doi.org/10.1016/j.jnutbio.2011.01.011
Aldous, S. J. Cardiac biomarkers in acute myocardial infarction. International journal of cardiology. 2013,164(3),282-94 https://doi.org/10.1016/j.ijcard.2012.01.081
Pervaiz, S.; Waskiewicz, D.; Anderson, F. P.; Lawson, C. J.; Lohmann, T. P.; Feng, Y. J.; Contois, J. H.. Wu, A. H. Comparative analysis of cardiac troponin I and creatine kinase‐MB as markers of acute myocardial infarction. Clinical cardiology. 1997,20(3),269-71 https://doi.org/10.1002/clc.4960200316
Kiessling, W.; Ricker, K.; Pflughaupt, K.; Mertens, H.. Haubitz, I. Serum myoglobin in primary and secondary skeletal muscle disorders. Journal of Neurology, 1981,224(3),229-33 https://doi.org/10.1007/BF00313285
Odum, E. P.; Young, E. E. Elevated cardiac troponin I, creatine kinase and myoglobin and their relationship with cardiovascular risk factors in patients with type 2 diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2018,12(2),141-5 https://doi.org/10.1016/j.dsx.2017.12.001
Kon, M.; Tanabe, K.; Akimoto, T.; Kimura, F.; Tanimura, Y.; Shimizu, K.; Okamoto, T.. Kono, I. Reducing exercise-induced muscular injury in kendo athletes with supplementation of coenzyme Q10. British journal of nutrition, 2008,100(4),903-9 https://doi.org/10.1017/S0007114508926544
Cirilli, I.; Damiani, E.; Dludla, P. V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L. E.; Orlando, P.; Silvestri, S.. Tiano, L. Role of coenzyme Q10 in health and disease: An update on the last 10 years (2010–2020). Antioxidants. 2021,10(8),1325 https://doi.org/10.3390/antiox10081325
Shittu, S.-T. T.; Oyeyemi, W. A.; Lasisi, T. J.; Shittu, S. A.-S.; Lawal, T. T.. Olujobi, S. T. Aqueous leaf extract of Ocimum gratissimum improves hematological parameters in alloxan-induced diabetic rats via its antioxidant properties. International Journal of Applied and Basic Medical Research, 2016,6(2),96 https://doi.org/10.4103%2F2229-516X.179016
Fagbohun, O. F.; Awoniran, P. O.; Babalola, O. O.; Agboola, F. K.. Msagati, T. A. Changes in the biochemical, hematological and histopathological parameters in STZ-Induced diabetic rats and the ameliorative effect of Kigelia africana fruit extract. Heliyon. 2020,6(5),e03989 https://doi.org/10.1016/j.heliyon.2020.e03989
Dallak, M.; Bin-Jaliah, I. Antioxidant activity of Citrullus colocynthis pulp extract in the RBC’S of alloxan-induced diabetic rats. Pakistan Journal of Physiology, 2010,6(1),1-5.Available from: http://pjp.pps.org.pk/index.php/PJP/article/view/837
Xulu, N.; Ngubane, P.; Khathi, A.; Booysen, I.. Sibiya, N. Heamanetic Effects of a Dioxidovanadium (V) Complex in STZ-Induced Diabetic Male Sprague Dawley Rats. Diabetes, metabolic syndrome and obesity: targets and therapy. 2021,14,4321 https://doi.org/10.2147%2FDMSO.S214726
Kennedy, L.. Baynes, J. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia. 1984,26(2),93-8 https://doi.org/10.1007/BF00281113
Kolanjiappan, K.; Manoharan, S.; Kayalvizhi, M. Measurement of erythrocyte lipids, lipid peroxidation, antioxidants and osmotic fragility in cervical cancer patients. Clinica chimica acta. 2002,326(1-2),143-9 https://doi.org/10.1016/S0009-8981(02)00300-5
Chalew, S.; Hamdan, M. Racial disparity in HbA1c persists when fructosamine is used as a surrogate for mean blood glucose in youth with type 1 diabetes. Pediatric diabetes. 2018,19(7),1243-8 https://doi.org/10.1111/pedi.12696
Niu, X.; Xiao, R.; Wang, N.; Wang, Z.; Zhang, Y.; Xia, Q.. Yang, X. The molecular mechanisms and rational design of anti-diabetic vanadium compounds. Current topics in medicinal chemistry. 2016;16(8):811-22 http://dx.doi.org/10.2174/1568026615666150827094652
Abdel-Moneim, A.; Zanaty, M. I.; El-Sayed, A.; Khalil, R. G.. Rahman, H. A. Relation between oxidative stress and hematologic abnormalities in children with type 1 diabetes. Canadian Journal of Diabetes, 2020,44(3),222-8 https://doi.org/10.1016/j.jcjd.2019.07.153
Davì, G.; Chiarelli, F.; Santilli, F.; Pomilio, M.; Vigneri, S.; Falco, A.; Basili, S.; Ciabattoni, G.. Patrono, C. Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation. 2003,107(25),3199-203 https://doi.org/10.1161/01.CIR.0000074205.17807.D0.