Fractional Pantograph Delay Equations Solving by the Meshless Methods
DOI:
https://doi.org/10.30526/36.3.3076Keywords:
Bernstein polynomials, Legendre polynomials, Pantograph Delay EquationsAbstract
This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some numerical examples are identified to show the utility and capability of the two proposed approaches. Mathematica®12 program has been relied upon in the calculations.
References
Jamil. B.; Anwar. M.S.; Rasheed. A.; Irfan. M. MHD Maxwell flow modeled by fractional derivatives with chemical reaction and thermal radiation. Chinese Journal of Physics. 2020, 67, 512-533, doi: org/10.1016/j.cjph.2020.08.012.
Alzubaidi. W.K.; Shaker. S.H. Methods of Secure Routing Protocol in Wireless Sensor Networks. Journal of AL-Qadisiyah for computer science and mathematics. 2018, 10, 3, 3855-, doi: 10.29304/jqcm.2018.10.3.437.
Alchikh. R.; Khuri. S.A. Numerical solution of a fractional differential equation arising in optics. Optik. 2020, 208, 163911 –163919, doi: org/10.1016/j.ijleo.2019.163911.
Bahaa. G. M. Optimal control problem for variable-order fractional differential systems with time delay involving Atangana–Baleanu derivatives. Chaos, Solitons, Fractals. 2019, 122, 129-142, doi: org/10.1016/j.chaos.2019.03.001.
Tarasov. V.E.; Aifantis. E. C. On fractional and fractal formulations of gradient linear and nonlinear elasticity. Acta Mechanica. 2019, 230, 6, 2043-2070, doi: org/10.1007/s00707-019-2373-x.
Goufo. E.F.D.; Nieto. J.J. Attractors for fractional differential problems of transition to turbulent flows. Journal of Computational and Applied Mathematics. 2018, 339, 329-342, doi: org/10.1016/j.cam.2017.08.026. DOI: https://doi.org/10.1016/j.cam.2017.08.026
Mechee. M. S.; Al-Shaher. O. I.; Al-Juaifri. G. A. Haar wavelet technique for solving fractional differential equations with an application. In AIP Conference Proceedings. 2019, 2086(1), 030025, doi:org/10.1063/1.5095110.
Agarwal. P.; El-Sayed. A. A. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Physica A: Statistical Mechanics and Its Applications. 2018, 500, 40-49, doi: https://doi.org/10.1016/j.physa.2018.02.014. DOI: https://doi.org/10.1016/j.physa.2018.02.014
Alizadeh. A.; Effati, S. Modified Adomian decomposition method for solving fractional optimal control problems. Transactions of the Institute of Measurement and Control. 2018, 40(6), 2054-206, doi: https://doi.org/10.1177/0142331217700243. DOI: https://doi.org/10.1177/0142331217700243
Thabet. H.; Kendre. S. New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations. Int. J. Adv. Appl. Math. Mech. 2019, 6(3), 1-13, https://www.researchgate.net/publication/332014078.
Ali. K. A., Approximate solution for fuzzy differential algebraic equations of fractional order using Adomain decomposition method. Ibn Al-Haitham J. for Pure&Appl. Sci.2017, 30(2), 202-213.
Javeed. S.; Baleanu. D.; Waheed. A.; Shaukat Khan. M.; Affan. H. Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics. 2019, 7(1), 40, doi: https://doi.org/10.3390/math7010040.
Hamoud. A.; Ghadle. K. Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind. Tamkang Journal of Mathematics. 2018, 49(4), 301-315, doi: https://doi.org/10.5556/j.tkjm.49.2018.2718.
Jiang. Y.; Xu. X. A monotone finite volume method for time fractional Fokker-Planck equations. Science China Mathematics. 2019, 62(4), 783-794, doi: https://doi.org/10.1007/s11425-017-9179-x DOI: https://doi.org/10.1007/s11425-017-9179-x
Baleanu. D.; Jassim. H. K.; Khan. H. A modification fractional variational iteration method for solving non-Linear gas dynamic and coupled Kdv equations involving local fractional operators. 2018, http://hdl.handle.net/20.500.12416/2276
Raslan. K. R.; Ali. K. K.; Mohamed. E. M. Spectral Tau method for solving general fractional order differential equations with linear functional argument. Journal of the Egyptian Mathematical Society. 2019, 27(1), 1-16, doi: https://doi.org/10.1186/s42787-019-0039-4.
Kuang. Y. (Ed.); Delay differential equations: with applications in population dynamics. Academic Press. 1993.
MacDonald. N.; MacDonald. N. Biological delay systems: linear stability theory. Cambridge University Press. 2008, www.cambridge.org/9780521340847.
Dehghan. M.; Shakeri, F. The use of the decomposition procedure of Adomian for solving a delay differential equation arising in electrodynamics. Physica Scripta. 2008, 78(6), 065004, doi:https://doi.org/10.1088/0031-8949/78/06/065004. DOI: https://doi.org/10.1088/0031-8949/78/06/065004
Magin. R.L. Fractional calculus models of complex dynamics in biological tissues. Comput Math Appl. 2010, 59,1586–1593, doi: https://doi.org/10.1016/j.camwa.2009.08.039. DOI: https://doi.org/10.1016/j.camwa.2009.08.039
Aiello. W. G.; Freedman. H. I.; Wu. J. Analysis of a model representing stage-structured population growth with state-dependent time delay. SIAM Journal on Applied Mathematics. 1992, 52(3), 855-869, doi: https://doi.org/10.1137/0152048 DOI: https://doi.org/10.1137/0152048
Rabiei. K.; Ordokhani. Y. Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Engineering with Computers. 2019, 35(4), 1431-1441. doi:https://doi.org/10.1007/s00366-018-0673-8.
Yuttanan. B.; Razzaghi. M.; Vo. T. N. A fractional‐order generalized Taylor wavelet method for nonlinear fractional delay and nonlinear fractional pantograph differential equations. Mathematical Methods in the Applied Sciences.2021, 44(5), 4156-4175, doi: https://doi.org/10.1002/mma.7020.
Avazzadeh. Z.; Heydari. M. H.; Mahmoudi. M. R. An approximate approach for the generalized variable-order fractional pantograph equation. Alexandria Engineering Journal. 2020, 59(4), 2347-2354., doi: https://doi.org/10.1016/j.aej.2020.02.028.
Sedaghat. S.; Ordokhani. Y.; Dehghan. M. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Communications in Nonlinear Science and Numerical Simulation. 2012, 17(12), 4815-4830, https://doi.org/10.1016/j.cnsns.2012.05.009 DOI: https://doi.org/10.1016/j.cnsns.2012.05.009
Hashemi. M. S.; Atangana. A.; Hajikhah. S. Solving fractional pantograph delay equations by an effective computational method. Mathematics and Computers in Simulation. 2020, 177, 295-305, doi: https://doi.org/10.1016/j.matcom.2020.04.026.
Adel. W.; Sabir, Z. Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. The European Physical Journal Plus. 2020, 135(5), 1-12, doi: https://doi.org/10.1140/epjp/s13360-020-00449-x
Rostamy. D.; Qasemi. S. Discontinuous Petrov-Galerkin and Bernstein-Legendre polynomials method for solving fractional damped heat-and wave-like equations. Journal of Computational and Theoretical Transport. 2015, 44(1), 1-23, doi: https://doi.org/10.1080/23324309.2014.955207. DOI: https://doi.org/10.1080/23324309.2014.955207
Benattia. M. E.; Belghaba. K. Numerical solution for solving fractional differential equations using shifted Chebyshev wavelet. Gen. Lett. Math. 2017, 3(2), 101-110.
Doha. E. H.; Bhrawy. A. H.; Ezz-Eldien. S. S. A new Jacobi operational matrix: an application for solving fractional differential equations. Applied Mathematical Modelling. 2012, 36(10), 4931-4943, doi: https://doi.org/10.1016/j.apm.2011.12.031. DOI: https://doi.org/10.1016/j.apm.2011.12.031
Mohammadi. F.; Hosseini. M. M. A new Legendre wavelet operational matrix of derivative and its applications in solving the singular ordinary differential equations. Journal of the Franklin Institute. 2011, 348(8), 1787-1796., doi: https://doi.org/10.1016/j.jfranklin.2011.04.017 DOI: https://doi.org/10.1016/j.jfranklin.2011.04.017
Ibraheem. G.H.; Al-Jawary. M.A. The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems. Alexandria Engineering Journal. 2020, 59,5, 4027-4033, doi: org/10.1016/j.aej.2020.07.008.
Alshbool. M. H. T.; Bataineh. A. S.; Hashim. I.; Isik. O. R. Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions. Journal of King Saud University-Science. 2017, 29(1), 1-18, doi: https://doi.org/10.1016/j.jksus.2015.11.004. DOI: https://doi.org/10.1016/j.jksus.2015.11.004
Al-Jawary. M.A.; Ibraheem. G.H. Tow meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences. Nonlinear Eng. J. 2020, 9,1, 244-255, doi: org/10.1515/nleng-2020-0012.
Saadatmandi. A.; Bernstein operational matrix of fractional derivatives and its applications. Applied Mathematical Modelling. 2014, 38(4), 1365-1372, doi: https://doi.org/10.1016/j.apm.2013.08.007. DOI: https://doi.org/10.1016/j.apm.2013.08.007
Saadatmandi. A.; Dehghan. M. A new operational matrix for solving fractional-order differential equations. Computers Mathematics with Applications. 2010, 59(3), 1326-1336, doi: https://doi.org/10.1016/j.camwa.2009.07.006. DOI: https://doi.org/10.1016/j.camwa.2009.07.006
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms