Synthesis and Characterization Graphene- Carbon Nitride Nanostructure in One Step
DOI:
https://doi.org/10.30526/36.3.3103Keywords:
Graphene-Carbon Nitride, structural characterization, Carbon Sheets, Polymer, Thermal method.Abstract
Graphene-carbon nitride can be synthesized from thiourea in a single step at a temperature of four hours at a rate of 2.3 ℃/min. Graphene-carbon nitride was characterized by Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron microscopy, and spectrophotometry (UV-VIS). Graphene-carbon nitride was found to consist of triazine and heptazine structures, carbon, and nitrogen. The weight percentage of carbon and the atomic percentage of carbon are 40.08%, and the weight percentage of nitrogen and the atomic percentage of nitrogen are 40.08%. Therefore, the ratio and the dimensions of the graphene-carbon nitride were characterized by scanning electron microscopy, and it was found that the radius was within the range of (2 µm-147.1 nm). In addition, it was found that it absorbed light in the visible field (VIS). The objective of the manufacture and characterization of graphene-carbon nitride for use in the manufacture of a selective electrode for an organic pollutant (currently used in the manufacture of a selective electrode for the analysis of organic dye).
References
Ong, W. J.; 2D/2D graphitic carbon nitride heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter?. Frontiers in Material, 2017, s, 4, 11. DOI: https://doi.org/10.3389/fmats.2017.00011
Zhang, Z.; Jiang, D.; Li, D.; He, M.; Chen, M.. Construction of SnNb2O6 nanosheet nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Applied Catalysis B: Environmental, 2016, 183, 113-123. DOI: https://doi.org/10.1016/j.apcatb.2015.10.022
Starukh, H.; Praus, P.. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis. Catalysts, 2020, 10,2019
Dong, G.; Zhang, Y.; Pan, Q.; Qiu, J. A fantastic graphitic carbon nitride material: electronic structure, photocatalytic and photoelectronic properties. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 20, 33-50. DOI: https://doi.org/10.1016/j.jphotochemrev.2014.04.002
Bai, L.; Huang, H.; Zhang, S.; Hao, L.; Zhang, Z.; Li, H.; Zhang, Y. Photocatalysis‐Assisted Co3O4/g‐C3N4 p–n Junction All‐Solid‐State Supercapacitors: A Bridge between Energy Storage and Photocatalysis. Advanced Science, 2020, 7, 22,, 2001939.
Shi, M.; Xiao, P.; Lang, J.; Yan, C.; Yan, X. Porous g‐C3N4 and MXene dual‐confined FeOOH quantum dots for superior energy storage in an ionic liquid. Advanced Science, 2020, 7, 2,, 1901975.
Hayat, A.; Al-Sehemi, A. G.; El-Nasser, K. S.; Taha, T. A.; Al-Ghamdi, A. A.; Syed, J. A. S.; Nawawi, W. I.. Graphitic carbon nitride (g–C3N4,–based semiconductor as a beneficial candidate in photocatalysis diversity. International Journal of Hydrogen Energy, 2021.
Yang, Z.; Xing, Z.; Feng, Q.; Jiang, H.; Zhang, J.; Xiao, Y.; Zhou, W.. Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. Journal of colloid and interface science, 2020, 68, 255-263.
Hu, T.; Dai, K.; Zhang, J.; Zhu, G.; Liang, C.. One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance. Materials Letters, 2019, 257, 126740.
Mohamed, M. A.; Zain, M. F. M.; Minggu, L. J.; Kassim, M. B.; Amin, N. A. S.; Salleh, W. N. W.; Hir, Z. A. M. Constructing bio-templated 3D porous microtubular C-doped g-C3N4 with tunable band structure and enhanced charge carrier separation. Applied Catalysis B: Environmental, 2018, 236, 265-279. DOI: https://doi.org/10.1016/j.apcatb.2018.05.037
Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 interlayers for enhanced photocatalysis. Acs Catalysis, 2016, 6,4, 2462-2472. DOI: https://doi.org/10.1021/acscatal.5b02922
Gashi, A.; Parmentier, J.; Fioux, P.; Marsalek, R. Tuning the C/N Ratio of C‐Rich Graphitic Carbon Nitride (g‐C3N4) Materials by the Melamine/Carboxylic Acid Adduct Route. Chemistry–A European Journal, 2022, 28,14, e202103605.
Yi, Y.; Wang, J.; Niu, Y.; Yu, Y.; Wu, S.; Ding, K. Exploring the evolution patterns of melem from thermal synthesis of melamine to graphitic carbon nitride. RSC Advances,2022, 12,37, 24311-24318.
Yao, G.; Liu, Y.; Liu, J.; Xu, Y. Facile Synthesis of Porous g-C3N4 with Enhanced Visible-Light Photoactivity. Molecules, 2022, 27 ,6, 1754.
Wang, J.; Yin, S.; Zhang, Q.; Cao, F.; Xing, Y.; Zhao, Q.; Wu, M. Single-Atom Fe-N4 sites promote the triplet-energy transfer process of g-C3N4 for the photooxidation. Journal of Catalysis, 2021, 404, 89-95.
Jia, Z.; Zhang, H.; Yu, Y.; Chen, Y.; Yan, J.; Li, X.; Zhang, H.. Trithiocyanuric acid derived g–C3N4 for anchoring the polysulfide in Li–S batteries application. Journal of Energy Chemistry, 2020, 43, 71-77.
Guan, K.; Li, J.; Lei, W.; Wang, H.; Tong, Z.; Jia, Q.; Zhang, SSynthesis of sulfur doped g-C3N4 with enhanced photocatalytic activity in molten salt. Journal of Materiomics,2021, 7 ,5, 1131-1142.
Hu, C.; Chu, Y. C.; Lin, Y. R.; Yang, H. C.; Wang, K. H. Photocatalytic dye and Cr (VI) degradation using a metal-free polymeric g-C3N4 synthesized from solvent-treated urea. Polymers, 2019, 11 ,1, 182.
Tapo, A.; Busabok, C.; Sujaridworakun, P.; Ngernchuklin, P.; influence of air and nitrogen atmosphere on g-C3N4 synthesized from urea. Khongwong, WThai Journal of Nanoscience and Nanotechnology, 2022, 7 ,1.
Khan, M. E.; Khan, M. M.; Cho, M. H.. Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic gC3N4 nanostructures towards improved photoelectrochemical performances. RSC advances, 2018,8,25, 13898-13909. DOI: https://doi.org/10.1039/C8RA00690C
Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Applied surface science, 2017, 391, 72-123. DOI: https://doi.org/10.1016/j.apsusc.2016.07.030
Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.;Chen, J.. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. international journal of hydrogen energy, 2019, 44 ,14, 7194-7204.
Bhat, S. S.; Jun, S. E.; Lee, S. A.; Lee, T. H.; Jang, H. W.. Influence of C3N4 precursors on photoelectrochemical behavior of TiO2/C3N4 photoanode for solar water oxidation. Energies, 2020, 13,4, 974.
Piao, H.; Choi, G.; Jin, X.; Hwang, S. J.; Song, Y. J.; Cho, S. P.; Choy, J. H. Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo-and Electro-Catalysis. Nano-micro letters, 2022, 14 ,1, 1-14.
Gkini, K.; Martinaiou, I.; Falaras, P. A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C3N4 Nanostructures. Materials, 2021, 14 ,7, 1679.
Yang, X.; Zhao, L.; Wang, S.; Li, J.; Chi, B. Recent progress of g-C3N4 applied in solar cells. Journal of Materiomics, 2021, 7,4, 728-741.
Ragupathi, V.; Panigrahi, P.; Subramaniam, N. G. g-C3N4 doped MnS as high performance electrode material for supercapacitor application. Materials Letters, 2019, 246, 88-91.
Thiagarajan, K.; Bavani, T.; Arunachalam, P.; Lee, S. J.; Theerthagiri, J.; Madhavan, J.; Choi, M. Y. Nanofiber NiMoO4/g-C3N4 composite electrode materials for redox supercapacitor applications. Nanomaterials, 2020, 10,2, 392.
Ngo, Y. L. T.; Chung, J. S.; Hur, S. H. Multi-functional NiO/g-C3N4 hybrid nanostructures for energy storage and sensor applications. Korean Journal of Chemical Engineering, 2020,37 ,9, 1589-1598.
Liu, P.; Zhang, Z.; Hao, R.; Huang, Y.; Liu, W.; Tan, Y.; Liu, K. Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chemical Engineering Journal, 2021, 403, 126425
Zhang, J.; Zhu, Z.; Di, J.; Long, Y.; Li, W.; Tu, Y. A sensitive sensor for trace Hg2+ determination based on ultrathin g-C3N4 modified glassy carbon electrode. Electrochimica Acta, 2015,. 186, 192-200. DOI: https://doi.org/10.1016/j.electacta.2015.10.173
Cai, Z.; Chen, J.; Xing, S.; Zheng, D.; Guo, L. Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. Journal of Hazardous Materials, 2021, 416, 126195.
Zeng, B.; Zhang, L.; Wan, X.; Song, H.; Lv, Y. Fabrication of α-Fe2O3/g-C3N4 composites for cataluminescence sensing of H2S. Sensors and Actuators B: Chemical,2015, 211, 370-376. DOI: https://doi.org/10.1016/j.snb.2015.01.094
Alizadeh, T.; Rafiei, FAn innovative application of graphitic carbon nitride ,g-C3N4) nano-sheets as silver ion carrier in a solid state potentiometric sensor. Materials Chemistry and Physics, 2019, 227, 176-183.
Yuda, A.; Kumar, A. A review of g-C3N4 based catalysts for direct methanol fuel cells. International Journal of Hydrogen Energy,2021.
Liu, Q.; Zhang, JGraphene supported Co-g-C3N4 as a novel metal–macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir, 2013,29 ,11, 3821-3828 DOI: https://doi.org/10.1021/la400003h
Li, X.; Yuan, Y.; Pan, X.; Zhang, L.; Gong, J. Boosted photoelectrochemical immunosensing of metronidazole in tablet using coral-like g-C3N4 nanoarchitectures. Biosensors and Bioelectronics, 2019, 123, 7-13.
Thurston, J. H.; Hunter, N. M.; Wayment, L. J.; Cornell, K. A. Urea-derived graphitic carbon nitride, (g-C3N4) films with highly enhanced antimicrobial and sporicidal activity. Journal of colloid and interface science, 2017, 505, 910-918. DOI: https://doi.org/10.1016/j.jcis.2017.06.089
Zhao, X.; Zhang, Y.; Zhao, X.; Wang, X.; Zhao, Y.; Tan, H.; Li, Y. Urea and melamine formaldehyde resin-derived tubular g-C3N4 with highly efficient photocatalytic performance. ACS applied materials interfaces, 2019, 11 ,31, 27934-27943.
Chidhambaram, N.; Ravichandran, K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications. Materials Letters, ,2017, 207, 44-48. DOI: https://doi.org/10.1016/j.matlet.2017.07.040
Khan, M. E.; Han, T. H.; Khan, M. M.; Karim, M. R.; Cho, M. H. Environmentally sustainable fabrication of Ag@ g-C3N4 nanostructures and their multifunctional efficacy as antibacterial agents and photocatalysts. ACS Applied Nano Materials, 2018, 1,6, 2912-2922. DOI: https://doi.org/10.1021/acsanm.8b00548
Reddy, K. R.; Reddy, C. V.; Nadagouda, M. N.; Shetti, N. P.; Jaesool, S.; Aminabhavi, T. M. Polymeric graphitic carbon nitride ,(g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications. Journal of environmental management, 2019, 238, 25-40.
Iqbal, N. ; Tailoring g-C3N4 with Lanthanum and Cobalt Oxides for Enhanced Photoelectrochemical and Photocatalytic Activity. Catalysts, 2021, 12 ,1, 15.
Ye, L.; Chen, S. Fabrication and high visible-light-driven photocurrent response of g-C3N4 film: the role of thiourea. Applied Surface Science, 2016, 389, 1076-1083. DOI: https://doi.org/10.1016/j.apsusc.2016.08.038
Kolesnyk, I.; Kujawa, J.; Bubela, H.; Konovalova, V.; Burban, A.; Cyganiuk, A.; Kujawski, W. Photocatalytic properties of PVDF membranes modified with g-C3N4 in the process of Rhodamines decomposition. Separation and Purification Technology, 2020, 250, 117231.
Mirzaei, H.; Ehsani, M. H.; Shakeri, A.; Ganjali, M. R.; Badiei, A. Preparation and photocatalytic application of ternary Fe3O4/GQD/g-C3N4 heterostructure photocatalyst for RhB degradation. Pollution, 2022, 8,3, 779-791.EHJ HGUQ,DM WFHY
Song, X.; Tao, Y.; Liu, J.; Lin, J.; Dai, P.; Wang, Q.; Zheng, CPhotocatalytic-induced bubble-propelled isotropic g-C3N4-coated carbon microsphere micromotors for dynamic removal of organic pollutants. RSC advances, 2022, 12 ,21, 13116-13126.
Li, X.; Xiong, J.; Gao, X.; Huang, J.; Feng, Z.; Chen, Z.; Zhu, YRecent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. Journal of Alloys and Compounds, 2019, 802, 196-209.
Kotbi, A.; Imran, M.; Kaja, K.; Rahaman, A.; Ressami, E. M.; Lejeune, M.; Jouiad, M. Graphene and g-C3N4-Based Gas Sensors. Journal of Nanotechnology, 2022, 2022.
Hasija, V.; Raizada, P.; Sudhaik, A.; Sharma, K.; Kumar, A.; Singh, P.; Thakur, V. KRecent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Applied Materials Today, 2019,15, 494-524.
Niu, P.; Zhang, L.; Liu, G.; Cheng, H. M. Graphene‐like carbon nitride nanosheets for improved photocatalytic activities. Advanced Functional Materials, 2012, 22 ,22, 4763-4770. DOI: https://doi.org/10.1002/adfm.201200922
Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Müller, H.; Schnick, W. Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, 2003, 125 ,34, 10288-10300. DOI: https://doi.org/10.1021/ja0357689
Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking melon by a complementary approach employing electron diffraction, solid‐state NMR spectroscopy, and theoretical calculations—structural characterization of a carbon nitride polymer. Chemistry–A European Journal, 2007, 13 ,17, 4969-4980. DOI: https://doi.org/10.1002/chem.200601759
Hong, Y.; Liu, E.; Shi, J.; Lin, X.; Sheng, L.; Zhang, M.; Chen, J. A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. international journal of hydrogen energy, 2019, 44 ,14, 7194-7204.
Zhou, D.; Qiu, C. Study on the effect of Co doping concentration on optical properties of g-C3N4. Chemical Physics Letters, 2019, 728, 70-73.
Ye, L.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 2013, 142, 1-7. DOI: https://doi.org/10.1016/j.apcatb.2013.04.058
Nguyen, H. P.; Nguyen, T. N.; Lee, S. W.; Hoang, M. H. The use of g-C3N4/MOFs (Fe) as a photocatalyst for remediation of pharmaceutics in water. Materials Research Express. 2022.
Lin, H.; Yang, Y.; Shang, Z.; Li, Q.; Niu, X.; Ma, Y.; Liu, A. Study on the enhanced remediation of petroleum-contaminated soil by biochar/g-C3N4 composites. International Journal of Environmental Research and Public Health, 2022,19,14, 8290.
Nasri, M. S. I.; Samsudin, M. F. R.; Tahir, A. A.; Sufian, S. Effect of MXene Loaded on g-C3N4 Photocatalyst for the Photocatalytic Degradation of Methylene Blue. Energies, 2022, 15,3, 955.
Lökçü, E.; Kaçar, N.; Çayirli, M.; Özden, R. C.; Anik, M. Photoassisted Charging of Li-Ion Oxygen Batteries Using g-C3N4/rGO Nanocomposite Photocatalysts. ACS applied materials interfaces.;2022.
Su, Y.; Su, L.; Liu, B.; Lin, Y.; Tang, D. Self-powered photoelectrochemical assay for Hg2+ detection based on g-C3N4-CdS-CuO composites and redox cycle signal amplification strategy. Chemosensors, 2022, 10,7, 286.
Yuan, X.; Qu, S.; Huang, X.; Xue, X.; Yuan, C.; Wang, S.; Cai, P. Design of core-shelled g-C3N4@ ZIF-8 photocatalyst with enhanced tetracycline adsorption for boosting photocatalytic degradation. Chemical Engineering Journal , 2021, 416, 129148.
Sun, E.; Wei, H.; Zhang, S.; Bi, Y.; Huang, Z.; Ji, G.; Zhao, C. Adsorption Coupling Photocatalytic Removal of Gaseous n-Hexane by Phosphorus Doped g-C3N4/TiO2/Zn ,OAc) 2-ACF Composites, 2022.
Yang, Z.; Xing, Z.; Feng, Q.; Jiang, H.; Zhang, J.; Xiao, Y.; Zhou, W. Sandwich-like mesoporous graphite-like carbon nitride (Meso-g-C3N4)/WP/Meso-g-C3N4 laminated heterojunctions solar-driven photocatalysts. Journal of colloid and interface science, 2020, 568, 255-263.
Zada, A.; Khan, M.; Hussain, Z.; Shah, M. I. A.; Ateeq, M.; Ullah, M.; Dang, A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Zeitschrift für Physikalische Chemie, 2022, 236 ,1, 53-66.
Deiminiat, B.; Rounaghi, G. H. A novel visible light photoelectrochemical aptasensor for determination of bisphenol A based on surface plasmon resonance of gold nanoparticles activated g-C3N4 nanosheets. Journal of Electroanalytical Chemistry, 2021, 886, 115122.
Ma, B.; Zhao, J.; Ge, Z.; Chen, Y.; Yuan, Z. 5 nm NiCoP nanoparticles coupled with g-C3N4 as high-performance photocatalyst for hydrogen evolution. Science China Materials,2020, 63 ,2, 258-266.
Agha Beygli, R.; Mohaghegh, N.; Rahimi, E. Metal ion adsorption from wastewater by g-C3N4 modified with hydroxyapatite: a case study from Sarcheshmeh acid mine drainage. Research on Chemical Intermediates, 2019, 45,4, 2255-2268.
Mančík, P.; Bednář, J.; Svoboda, L.; Dvorský, R.; Matýsek, D. Photocatalytic reactivation of gC 3 N 4 based nanosorbent. NANOCON ,2017, 2017, 289-294.
Kroke, E.; Schwarz, M.; Horath-Bordon, E.; Kroll, P.; Noll, B.; Norman, A. D. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic structures. New Journal of Chemistry, 2002, 26 ,5, 508-512. DOI: https://doi.org/10.1039/b111062b
Cook, A. M. Biodegration of s-triazine xenobiotics. FEMS Microbiology Reviews, 1987,3,2, 93-116. DOI: https://doi.org/10.1111/j.1574-6968.1987.tb02454.x
Hosmane, R. S.; Rossman, M. A.; Leonard, N. J. Synthesis and structure of tri-s-triazine. Journal of the American Chemical Society, 1982. 104 ,20, 5497-5499. DOI: https://doi.org/10.1021/ja00384a046
Zhou, X.; Shi, Y.; Xu, W.; Wang, Y.; Zhang, Y.; Wang, Y.; Zhong, W. Ultra-thin deaminated tri-s-triazine-based crystalline nanosheets with high photocatalytic hydrogen evolution performance. Journal of Alloys and Compounds, 2020, 827, 154307.
Rao, M. H.; D GHULE, V. I. K. A. S.; Muralidharan, KNitrogen-rich compounds: s-triazine and tri-s-triazine derivatives as high energy materials. Journal of Chemical Sciences, 2022, 134.
Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J.. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B: Environmental, 2015,176, 44-52. DOI: https://doi.org/10.1016/j.apcatb.2015.03.045
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms