Cubic Of Positive Implicative Ideals In KU- Semigroup

Main Article Content

Fatema. F. Kareem
Samy M. Mostafa
Omniat. A. Hasan

Abstract

In this paper, we define a cubic positive implicative-ideal, a cubic implicative-ideal and a cubic commutative-ideal of a semigroup in KU-algebra as a generalization of a fuzzy (positive implicative-ideal, an implicative-ideal and a commutative-ideal) of a semigroup in KU-algebra. Some relations between these types of cubic ideals are discussed. Also, some important properties of these ideals are studied. Finally, some important theories are discussed. It is proved that every cubic commutative-ideal, cubic positive implicative-ideal, and cubic implicative-ideal are a cubic ideal, but not conversely. Also, we show that if Θ is a cubic positive implicative-ideal and a cubic commutative-ideal then Θ is a cubic implicative-ideal. Some examples of the opposite direction of the previous theories are obtained.

Article Details

How to Cite
[1]
Kareem, F.F. et al. 2024. Cubic Of Positive Implicative Ideals In KU- Semigroup. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 1 (Jan. 2024), 454–463. DOI:https://doi.org/10.30526/37.1.3112.
Section
Mathematics

Publication Dates

References

Prabpayak, C. ; Leerawat, U. On ideals and congruence in KU-algebras. Scientia Magna(International Book Series). 2009,5,1, 54-57.

Prabpayak, C. ; Leerawat, On isomorphisms of KU-algebras, scientia magna (International Book Series). 2009,5,3, 25-31.

Zadeh, L. A. The concept of a linguistic variable and its application to Approximate reasoning. I, Information Sci. And Control. 1975, 8, 199-249. DOI: https://doi.org/10.1016/0020-0255(75)90036-5

Rosenfeld, A. Fuzzy groups, J. Math. Anal. Appl.1971, 35, 512-517. DOI: https://doi.org/10.1016/0022-247X(71)90199-5

Jun, Y. B.; Meng J. Fuzzy p-ideals in BCI-algebras. Math. Japonica. 1994, 40 ,2, 271–282.

Jun, Y. B.; Meng J ; Mostafa, S.M. On Fuzzy Implicative ideals of BCK- algebras. SOOCHW Journal of Mathematics. 1999 , 25, 1, 57-70.

Mostafa, S.M.; Abd-Elnaby, M.A.; Yousef, M.M.M. Fuzzy ideals of KU-Algebras. Int. Math, Forum. 2011, 6,63, 3139-3149.

Xin , X. L.; Ji ,W.; Hua, X. J .Fuzzy Filter Spectrum of a BCK Algebra. International Journal of Mathematics and Mathematical Sciences 2011, 13 pages. https://doi.org/10.1155/2011/795934 DOI: https://doi.org/10.1155/2011/795934

Satyanarayana, B. ; Madhavi , U .B. fuzzy positive implicative extension ideals in BCK-algebras. British Journal of Mathematics and Computer Science. 2016, 12,4, 1-9. DOI: https://doi.org/10.9734/BJMCS/2016/20217

Tawfiq, L. N.; Qa’aed, M. M. On Fuzzy Groups and Group Homomorphism. Ibn AL-Haitham Journal For Pure and Applied Sciences 2017, 25,2, 340-346. https://jih.uobaghdad.edu.iq/index.php/j/article/view/641

Mostafa, S.M.; Abd El-Baser, O.W. Fuzzy implicative ideals in KU-algebra. Journal of New Theory. 2018, 22, 82-91.

Megalai, K.; Tamilarasi, A. Fuzzy Subalgebras and Fuzzy T-ideals in TM-Algebras. J Math Stat. 2011, 7 , 2,107-111. https://doi.org/10.3844/jmssp.2011.107.111 DOI: https://doi.org/10.3844/jmssp.2011.107.111

Lee, K.M. Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies. 2000, 307-312.

Lee, K.M. Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar-valued fuzzy sets. J. Fuzzy Logic intelligent Systems. 2004, 14, 125-129. DOI: https://doi.org/10.5391/JKIIS.2004.14.2.125

Yaqoob, N.; Ansari, M. A. Bipolar (λ,δ)- Fuzzy ideals in Ternary semigroups. Int. J. Math. Analysis. 2013, 7,361777-1782. DOI: https://doi.org/10.12988/ijma.2013.35127

Muhiuddin, G. Bipolar fuzzy KU-subalgebrasideals of KU-algebras. Ann. Fuzzy Math. Inform. 2014 ,8,3, 339-504.

Kareem, F.F. ; Talib, S. A. Interval value fuzzy k-ideals of KU-semigroup. Ibn Al-Haitham Journal for Pure and Applied Science. 2020,33,2, 95-106. https://doi.org/10.30526/33.2.2430 DOI: https://doi.org/10.30526/33.2.2430

Jun, Y. B.; Kim, C. S.; M. S. Kang. Cubic subalgebras and ideals of BCK/BCI-algebras. Far East Journal of Mathematical Sciences. 2010, 2,44, 239–250.

Jun, Y. B; Lee, K. J; Kang, M. S. Cubic structures applied to ideals of BCI-algebras. Comput Math Appl. 2011, 26,9, 3334-3342. https://doi.org/10.1016/j.camwa.2011.08.042 DOI: https://doi.org/10.1016/j.camwa.2011.08.042

Yaqoob, N.; Mostafa, S.M.; Ansari, M. A. On cubic KU-ideals of KU-algebras. ISRN Algebra. 2013 Article ID935905, 10 pages. DOI: https://doi.org/10.1155/2013/935905

Hasan, E. R.; Kareem, F.F. Fuzzy KU-Semi-Groups and Investigate Some Basic Properties. Journal of Engineering and Applied Science. 2018,13,18, 7739-7744.

Kareem, F.F.; Hasan, O.A. Cubic ideals of semigroup in KU-algebra. J. Phys.: Conf. Ser. 1804. 2021, 012018.

Senapati, T.; Shum, K.P. Cubic implicative ideals of BCK-algebras. Missouri J. of Math. Sci. 2017, 29, 2, 125-138.

Senapati, T.; Jun, Y. B.; Shum, K.P. Cubic Intuitionistic Implicative Ideals of BCK-Algebras. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 2021, 91, 2, 273-282.

Jun, Y. B.; Kim, C. S.; Kang; Kang, J. G. Cubic q -ideals of BCI-algebras. Annals of Fuzzy Mathematics and Informatics. 2011, 1, 1, 25- 34.

Akram, M. ; Yaqoob, N.; Gulistan, M. cubic KU-subalgebras. Int. J. Pure Appl. Math. 2013, 89 ,5, 659- 665. DOI: https://doi.org/10.12732/ijpam.v89i5.2

Muhiuddin, G.; Al-roqi, A. M. Cubic soft sets with applications in BCK/ BCI-algebras. Annals of Fuzzy Mathematics and Informatics. 2014, 8 , 291-304. DOI: https://doi.org/10.1155/2014/458638

Janaa, C.; Senapati, T. Cubic G-subalgebras of G-algebras. Annals of Pure and Applied Mathematics. 2015, 10, 1, 105-115.

Muhiuddin, G.; Ahn, S. S.; Kim, C. S.; Jun, Y .B . Stable Cubic Sets. Journal of Computational Analysis and Applications. 2017 , 23,5, 802–819 .

Lee, J. G.; Hur , K.; Mostafa, S. M. Cubic bipolar structures of BCC-ideal on BCC-algebras. Annals of Fuzzy Mathematics and Informatics.2020, 20,1, 89-103.