In Vitro Effect of Mannitol Stress and γ-ray on Secondary Products From Golden Sunrise Cherry Tomato Callus

Authors

  • Shaimaa N. Mizil Department of Biology Science College/AL-Mustansiriyah University, Baghdad, Iraq.
  • Ekhlas. A.J. ElKaaby Department of Genetic Engineering Ministry of Sciences and Technology, Food and Biotechnology Center.
  • Maher Z. F. Al-Shammary Department of Biology, College of Education for Pure Science Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq

DOI:

https://doi.org/10.30526/36.3.3117

Abstract

Effect of drought stress induced by mannitol on secondary products in callus of Golden Sunrise cherry tomatoes were studied in vitro. Seeds were irradiated with gamma at the doses (0, 20, or 40 Gy), and germinated on Murashige and Skoog, (MS) basal medium. Callus were initiated from cotyledon leaf explants using a combination of (2.0 kin + 2.0 IAA mg. l-1) then transferred into MS medium supplemented with mannitol at concentrations of (0, 40, and 60 g.l-1). Vitamin C(vit C), enzyme activity, Ascorbate peroxidase (Apx), and Amylase  enzymes, Proline amino acid and β- carotene were quantified by high-performance Performance Liquid Chromatography (HPLC). Results revealed that, highest contents of (Apx) 128.16 µg. ml-1 and 132.6 µg. ml-1 for amylase at 60 g.l-1 of mannitol and 0 Gy of gamma, respectively. Furthermore, the content of VIT C (265.57 µg. ml-1 ) at 20 Gy and 60 g.l-1 of mannitol. The results also showed that a combination of 40 Gy and 60 g.l-1 of mannitol was optimum for the production of high proline amino acids (761.0 µg. ml-1 )  and  (113.54 µg. ml-1 )  for β- carotene  content in callus culture.

References

Paduchuri, P.; Gohokar, S.; Thamke, B.; Subhas, M. Transgenic tomatoes. Int J Adv Biotechnol Res .2010, 2, 69–72. http://www. bipublication.com.

Mamidala, P.; Nanna, R.S. Effect of genotype, explant source and medium on in vitro regeneration of tomato. Int. J. Gen. Molec. Biol., 2011, 3(3), 45–50.

Chandran, H., Meena, M., Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnology Reports, 2020,26, p.e00450.

Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules, 2018,23(4), 762.

Pagare, S., Bhatia, M., Tripathi, N., Pagare, S. ; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Current Trends in Biotechnology and Pharmacy, 2015,9(3), 293-304.

Zykin, P.A.; Andreeva, E.A.; Lykholay, A.N.; Tsvetkova, N.V. ; Voylokov, A.V. Anthocyanin composition and content in rye plants with different grain color. Molecules, 2018, 23(4), 948.

Jassim, E.H.; Ameen, S.K. Effect of sucrose and mannitol on Ajmalicine production from leaves induced callus of Catharanthus roseus LG Don in vitro. J. Biotechnol. Res. Center. 2014, 1,8(2), 27-34.

Ibrahim, I.R.; Ameen, S.K. Influence of stress on secondary metabolites production from callus of Moringa oleifera in vitro. The Iraqi J. Agric. Sci. 2017, 48(4), 1099.

Vijayasree, N.; Udayasri, P.; Aswani, K.Y.; Ravi, B.B.; Phani, K.Y. ; Vijay, V.M. Advancements in the Production of Secondary Metabolites. J. Nat. Prod. 2010, 3, 112-123.

Gerszberg, A.; Hnatuszko-Konka, K.; Kowalczyk, T. ; Kononowicz, A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120(3), 881-902.

Spencer-Lopes, M.M.; Forster, B.P.; Jankuloski, L. Manual on mutation breeding (No. Ed. 3). Food and Agriculture Organization of the United Nations (FAO), 2018.

Suprasanna, P.; Vitthal, S.B.; Yadav, P.V. In vitro mutagenesis and selection in plant tissue cultures and their prospects for crop improvement. Bioremediation, Biodiversity and Bioavailability. 2012, 6(Special Issue 1), 6-14.

Hernández-Muñoz, S.; Pedraza-Santos, M.E.; López, P.A.; Gómez-Sanabria, J.M. and Morales-García, J.L. Mutagenesis in the improvement of ornamental plants. Revista Chapingo. Serie horticultura. 2019, 25(3), 151-167.

Al-Safadi, B.; Elias, R. Improvement of caper (Capparis spinosa L.) propagation using in vitro culture and gamma irradiation. Scientia Horticulturae, 2011, 127(3), 290-297.

Cecoli, G.; Ramos, J.C.; Ortega, L.I.; Acosta, J.M. and Perreta, M.G. Salinity Induced Anatomical and Morphological Changes in Chloris gayana Kunth Roots. Biocell., 2011, 35(1), 9-17.

Rajput, V.D.; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S. and Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology. 2021, 26, 10(4), 267.

Liang, X.; Zhang, L.; Natarajan, S.K.; Becker, D.F. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 2013, 19(9), 998-1011.

Murashige, T.;Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15(3),473-97.

Mitic, M.N. Rapid and Reliable HPLC Method for the Determination of Vitamin C in Pharmaceutical Sample. Trop J Pharm Res. 2011, 10(1), 105-111.

Yang, L.; Xi, Y.; Luo, Y.; Ni1, H.; Hai-Hang, L.i. Preparation of peroxidase and phenolics using discarded sweet potato old stems. Scientific Reports, 2019, 9, 1-10.

Gokulakumar, B. ; Narayanaswamy, R. High Performance Liquid Chromatography for the Estimation and Detection of Amino Acids in Root Rot Disease in Sesame. Advan. Biol. Res, 2009, 3(5-6), 162-167.

Jones, B.N. ; Gilligan, J.P. O-phthaldialdehyde precolumn derivatization and reversed-phase high - performance liquid chromatography of polypeptide hydrolysates and physiological fluids. J. Chr. A. 1983, 266, 471-482.

Budhiraja R.P. Separation chemistry. New Age International Ltd, Publishers, New Delhi, 2004, 171-239

Murthy, N.H.; Lee E.J. ;Peak K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue and Organ Culture. 2014, 118(1), 1- 16.

Lopez-Puc, G.An effective in vitro slow growth protocol for conservation of the orchid Epidendrum chlorocorymbos SCHLTR. Trop. Subtrop. Agroecosyst. 2013, 16, 61–68.

El-Bahr, M.K.; Abd EL-Hamid, A.; Matter, M.A.; Shaltout, A.; Bekheet, S.A. and El-Ashry, A.A. In vitro conservation of embryogenic cultures of date palm using osmotic mediated growth agents. J. Genet. Eng. Biotechnol. 2016, 14, 363–370.

Huang, G.T.; Ma, S.L.; Bai, L.P.; Zhang, L.; Ma, H.; Jia, P.; Liu, J.; Zhong, M.; Guo, Z.-F. Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep., 2012, 2, 969–987.

Macovei, A.; Garg, B.; Raikwar, S.; Balestrazzi, A.; Carbonera, D.; Buttafava, A.; Bremont, J.F.; Gill, S.S. and Tuteja, N. Synergistic exposure of rice seeds to different doses of-ray and salinity stress resulted in increased antioxidant enzyme activities and gene-specific modulation of tc-ner pathway. BioMed research Int., 2014, 2014.

Beyaz, R.; Sancak, C.; Yildiz, Ç.; Kuşvuran, Ş.; Yildiz M. Physiological responses of the M1 sainfoin (Onobrychis viciifolia Scop) plants to gamma radiation. Appl Radiat Isot., 2016, 118, 73-79. doi: 10.1016/j.apradiso.2016.09.005.

Beyaz, R. Impact of gamma irradiation pretreatment on the growth of common vetch (Vicia sativa L.) seedlings grown under salt and drought stress. International Journal of Radiation Biology, 2020, 96(2), 257-66.

Azizi, Kh.; Moradii, J.; Heidari, S.; Khalili, A. ;Feizian, M. Effect of different concentrations of gibberellic acid on seed yield and yield components of soybean genotypes in summer intercropping. Inter. J. Agri.Sci. 2012, 2(4), 291-301.

Quiles, M.J. ; Lopez, N. I. Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant grown effects on the chloroplastic NADH dehydrogenase complex. Plant Sci., 2004, 166, 815-823.

Kareem, T.K. ; Abbas, T.K. Biochemical and physiological Changes of Callus growth and Lycopene Pigment Production from Tomato ( Lycopersicon esculentum Mill.) under Drought Stress. International Journal of innovative. Science and Technology. 2018, 3(2), 7-21.

Venkatesh, J. ; Park, S.W. Role of L-ascorbate in alleviating abiotic stresses in crop plants. Botanical Studies. 2014, 55(1), 1-9.

Hadi, S.M.; Ibrahim, K.M. ; Yousif, S.I. Effect of shock and elevated levels of mannitol on callus growth, regeneration and proline accumulation in Ruta graveolens cultures. Int. J. Curr. Microbiol. App. Sci., 2014, 3(11), 479-88.

Alaakel, S.; AL-Ouda, AS. ; Youssef, A.A. Effect of Salt and Osmotic Stresses on the Activity of Some Antioxidant Enzymes and Biochemical Traits in Catharanthus roseus. Baghdad Science Journal. 2021, 18(3).

Xiong, L. ;Zhu, J.K. Molecular and genetic aspects of plant response to osmotic stress. Plant Cell Environ., 2002, 25, 131– 139.

Shulaev, V.; Cortes, D.; Miller, G. ; Mittler, R. Metabolomics for plant stress response. Physiological Plant, 2008, 132(2), 199-208.

Teixeira, J. ; Fidalgo, F. Salt stress effects glutamine synthetase activity and mRNA accumulation on Potato plants in an organ dependent manner. Plant physiological. Biochem, 2009, 47(9), 807-813.

Szabados, L. ; Savoure, A. Proline: a multifunctional amino acid. Trends Plant Sci., 2010, 15(2): 89-97.

Downloads

Published

20-Jul-2023

Issue

Section

Biology

How to Cite

[1]
Mizil, S.N. et al. 2023. In Vitro Effect of Mannitol Stress and γ-ray on Secondary Products From Golden Sunrise Cherry Tomato Callus . Ibn AL-Haitham Journal For Pure and Applied Sciences. 36, 3 (Jul. 2023), 60–71. DOI:https://doi.org/10.30526/36.3.3117.