Pure Maximal Submodules and Related Concepts

Authors

  • khawla ahmed Department of Mathematics, College of Science, University of Baghdad, Iraq
  • Nuhad S. Al. Mothafar Department of Mathematics, College of Science, University of Baghdad, Iraq

DOI:

https://doi.org/10.30526/36.4.3139

Keywords:

R-module, R-submodule, Pr-module, Pr-maximal,Pr-local, N-maximal.

Abstract

      In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule  of an R-module  is called Pr- maximal if  ,for any submodule  of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule  

 of an R-module  is named near (N-maximal) whensoever  is pure submodule of  such that  then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of  is Pr-maximal. A ring  is named Pr-ring if whole proper ideal of  is a Pr-maximal ideal, we offer the concept pure local (Pr-local) module an R-module  is named pure local (Pr-local) module. If it has only a Pr-maximal submodule which includes all proper submodule of . A ring  is named pure local (Pr-local) ring, if  is a Pr-local R-module. We give some relatio among Pr-maximal submodules and others related concept.

References

Nuhad S..Al-Mothafar;Mohammed B.H. Alhakeem,Nearly Semiprime Submodule,Iraq,Journal of Science,2015, 56,4B,PP,3210-3214 .

Amira, A. A. ; Sahira, M. Y. Large-Maximal submodules, J. Phys.: Conf. Ser. 2019, 1294, 1-5.

Shahad, H. A. ; Al-Mothafar, N. S. On P-Essential Submodules, Iraqi Journal of Science, 2021; 62, 4916–4922.

Ajeel, A. S. ; Mohammad Ali, H. K. Approximaitly Prime Submodules and Some Related Concepts. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2019, 32(2), 103–113.

Abdulla, O. A. ; Mohammad Ali, H. K. Pseudo Quasi-2-Absorbing Submodules and Some Related Concepts. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2019,32(2), 114–122.

Shwkaca, M. R. ;Weak maximal Ideals and Weak Maximal submodules, M. Sc. Thesis, 2012, College of Education, University of Tikrit.

Thaar; Y. C. Purely Quasi-Dedekind Modules and Purely Prime Modules, 2017, University of AL-Qadisyah.

Wisbauer; R. Foundotion of Module and Ring Theory; Gordon and Breach, 1991,Philadelphia.

Abd El-Bast, Z. ; Smith, P. F. Multiplication Modules; comm. Algebra,1988,16, 755-779.

Majid; M. A. ; David, J. S. Pure Submodules of Multiplication Module; Contributions to Algebra and Geometry, 2004, 45, 61-74.

B.H.AL-Bahrani , on purely y-Extending Modules , Iraqi Journal of scince, 2013 ,54,pp.672-675,

Downloads

Published

20-Oct-2023

Issue

Section

Mathematics

Publication Dates