Semi-Small Compressible Modules and Semi-Small Retractable Modules

Main Article Content

Mohammed Baqer Hashim Al Hakeem
Nuhad S. Al-Mothafar
Maryam Haghjooyan

Abstract

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .


    In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.


 

Article Details

How to Cite
[1]
Hashim Al Hakeem, M.B. et al. 2023. Semi-Small Compressible Modules and Semi-Small Retractable Modules. Ibn AL-Haitham Journal For Pure and Applied Sciences. 36, 4 (Oct. 2023), 407–413. DOI:https://doi.org/10.30526/36.4.3156.
Section
Mathematics

Publication Dates

References

Mohammed,B.H.ALhakeem.; Nuhad S. Al. Mothafar . P-small Compressible Modules and P-small Retractable Modules. Ibn Al-Haitham Journal for Pure and Applied Science, to appear.

Nuhad, S. Al-Mothafar.; Mohammed B. H. Alhakeem. Nearly Semiprime sub modules. Iraqi Journal of Science, 2015, 56, 4, 3210-3214.

Mijbass, A. S.; Nada Khalid Abdullah. semi-small sub modules. Tikrit Journal of Pure Science, 2011, 16, 1,104-107.

Israa. H. Muslem.; Some types Of Retractable and Compressible Modules. M.Sc.thesis. 2016. College of Education for pure Science. University of Baghdad.

Fluery, P.; Hollow modules and local endomorphism rings. Pacific J. Math. 1974.53. 379–385. DOI: https://doi.org/10.2140/pjm.1974.53.379

Diop.P.C.; Dia. M.L. On E-Small Compressible Modules. Journal of Algebra and Related Topics. 2021,9,2,69-81.

T. Y. Ghawi.; Some Generalization of Quasi-Dedekind Modules. M.Sc. Thesis , University of Baghdad, College of Education Ibn Al-Haitham, 2010.

Hadi, I. M., and Marhun, H. K. Small Monoform Modules. Ibn AL-Haitham Journal for Pure and Applied Sciences, 2017,27,2, 229–240.