Synthesis, Characterization and Surface Properties of Nano-TiO2 Using a Novel Leaf Extracts
Main Article Content
Abstract
The main focus of research is on the nature of applications in the fields of science and technology, particularly nanotechnology. In this paper, a simple, non-toxic, inexpensive, and environmentally friendly green method was used to synthesize TiO2 nanoparticles using the extraction of portulacaria afra plant leaves and TiCl4 as a precursor. The synthesized titanium dioxide nanoparticles were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction patterns, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller analysis. The SEM image of TiO2 nanoparticles showed a few spherical, non-agglomerated particles. The average diameter of the nanoparticles, according to the surface topography of TiO2-NPs, is 70.24 nm. It was found that the average crystalline size was 18.9 nm by utilizing the Debye-Scherrer equation to calculate the size of the crystals. The vibrational mode of Ti-O-Ti exhibits a distinctive peak in the broad band centered at 578.64, 547.78, and 514.99 cm-1, which denotes the development of metal-oxygen bonding, confirming the presence of TiO2-NPs. The specific surface of the synthesized particles was calculated using the Brunauer-Emmett-Teller BET equation.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Hussain, C. M. ; Mishra, A. K. Nanotechnology for Sustainable Water Resources. John Wiley & Sons 2018.
Dusastre, V. Materials for sustainable energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. World Scientific 2010. DOI: https://doi.org/10.1142/7848
Gao, L.; Zhang, Q. Effects of Amorphous Contents and Particle Size on the Photocatalytic Properties of TiO2 Nanoparticles. Scripta materialia 2001, 44, 1195-1198. DOI: https://doi.org/10.1016/S1359-6462(01)00681-9
Lee, H. B.; Choi, M. S.; Kye, Y. H.; An, M.Y.; Lee, I. M. Control of Particle Characteristics in the Preparation of TiO2 Nano Particles Assisted by Microwave. Bulletin of the Korean Chemical Society 2012, 33, 1699-1702. DOI: https://doi.org/10.5012/bkcs.2012.33.5.1699
Shivaraju, H.; Byrappa, K.; Kumar, T.V.; Ranganathaiah, C. Hydrothermal Synthesis and Characterization of TiO2 Nanostructures on the Ceramic Support and Their Photo-Catalysis Performance. Bulletin of the Catalysis Society of India 2010, 9, 37-50.
Thangavelu, K.; Annamalai, R.; Arulnandhi, D. Preparation and Characterization of Nanosized TiO2 Powder by Sol-Gel Precipitation Route. International Journal of Emerging Technology and Advanced Engineering 2013, 3, 636-639.
Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T.O. A Solvothermal Single‐Step Route Towards Shape‐Controlled Titanium Dioxide Nanocrystals. The Canadian Journal of Chemical Engineering 2012, 90, 8-17. DOI: https://doi.org/10.1002/cjce.20574
Rasool, K.; Usman, M.; Ahmad, M.; Imran, Z.; Rafiq, M. A.; Hasan, M.M.; Nazir, A.Effect of Modifiers on Structural and Optical Properties of Titania (TiO2) Nanoparticles. Saudi International Electronics, Communications and Photonics Conference (SIECPC) 2011, 1-4. DOI: https://doi.org/10.1109/SIECPC.2011.5876909
Aravind, M.; Amalanathan, M.; Mary, M. Synthesis of TiO2 Nanoparticles by Chemical and Green Synthesis Methods and Their Multifaceted Properties. SN Applied Sciences 2021, 3, 1-10.
Huq, M.A.; Ashrafudoulla, M.; Rahman, M.; Balusamy, S.R.; Akter, S. Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers 2022, 14, 742.
Rao, K.G.; Ashok, C.; Rao, K.V.; Chakra, C.; Tambur, P. Green Synthesis of TiO2 Nanoparticles Using Aloe Vera Extract. Int. J. Adv. Res. Phys. Sci 2015, 2, 28-34.
Alamdari, S.; Sasani Ghamsari, M.; Lee, C.; Han, W.; Park, H. H.; Tafreshi, M. J.; Ara, M.H.M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus Ebulus. Applied Sciences 2020, 10, 3620.
Abu-Dalo, M.; Jaradat, A.; Albiss, B.A.; Al-Rawashdeh, N. A. Green Synthesis of TiO2 NPs/Pristine Pomegranate Peel Extract Nanocomposite and Its Antimicrobial Activity for Water Disinfection. Journal of Environmental Chemical Engineering 2019, 7, 103370.
Goutam, S. P.; Saxena, G.; Singh, V.; Yadav, A. K.; Bharagava, R. N.; Thapa, K. B. Green Synthesis of TiO2 Nanoparticles Using Leaf Extract of Jatropha Curcas L. for Photocatalytic Degradation of Tannery Wastewater. Chemical Engineering Journal 2018, 336, 386-396. DOI: https://doi.org/10.1016/j.cej.2017.12.029
Rosi, H.; Kalyanasundaram, S. Synthesis, Characterization, Structural and Optical Properties of Titanium-Dioxide Nanoparticles Using Glycosmis Cochinchinensis Leaf Extract and Its Photocatalytic Evaluation and Antimicrobial Properties. World News of Natural Sciences 2018, 17.
Sethy, N.K.; Arif, Z.; Mishra, P.K.; Kumar, P. Green Synthesis of TiO2 Nanoparticles from Syzygium Cumini Extract for Photo-catalytic Removal of Lead (Pb) in Explosive Industrial Wastewater. Green Processing and Synthesis 2020, 9, 171-181. DOI: https://doi.org/10.1515/gps-2020-0018
Patidar, V.; Jain, P. Green Synthesis of TiO2 Nanoparticle Using Moringa Oleifera Leaf Extract. Int Res J Eng Technol 2017, 4, 1-4.
Santhoshkumar, T.; Rahuman, A. A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A. V.; Kim, S. K. Green Synthesis of Titanium Dioxide Nanoparticles Using Psidium Guajava Extract and Its Antibacterial and Antioxidant Properties. Asian Pacific journal of tropical medicine 2014, 7, 968-976. DOI: https://doi.org/10.1016/S1995-7645(14)60171-1
A Salaheldin, T.; A El-Chaghaby, G.; A El-Sherbiny, M. Green Synthesis of Silver Nanoparticles Using Portulacaria Afra Plant Extract: Characterization and Evaluation of Its Antibacterial, Anticancer Activities. Novel Research in Microbiology Journal 2019, 3, 215-222.
Kareem, S.H.; Al-Hussien, E. Adsorption of Congo, Red Rhodamine B and Disperse Blue Dyes from Aqueous Solution Onto Raw Flint Clay. Baghdad Sci J 2012, 9, 680-688.
Supriya, S.; Sathish, S. Enhanced Photocatalytic Decolorization of Congo Red Dye with Surface-Modified Zinc Oxide Using Copper (II)-Amino Acid complex. Inorganic and nano-metal chemistry 2020, 50, 100-109.
Saed, S.A.; AL-Mammar, D.E. Influence of Acid Activation of a Mixture of Illite, Koalinite, and Chlorite Clays on the Adsorption of Methyl Violet 6B Dye. Iraqi Journal of Science 2021, 1761-1778.
Rahimi, R.; Parvaz, S.; Rabbani, M. Adsorption of methyl orange by zinc oxide synthesized via a facile precipitation method. MDPI AG 2017.
Rajeshkumar, S.; Santhoshkumar, J.; Jule, L. T.; Ramaswamy, K. Phytosynthesis of Titanium Dioxide Nanoparticles Using King of Bitter Andrographis Paniculata and Its Embryonic Toxicology Evaluation and Biomedical Potential. Bioinorganic Chemistry and Applications 2021.
Kadhim, H.H.; Saleh, K.A. Removing of Copper Ions from Industrial Wastewater Using Graphene oxide/Chitosan Nanocomposite. Iraqi Journal of Science 2022 1894-1908.
Al-Saadi, T. M. Investigating the Structural and Magnetic Properties of Nickel Oxide Nanoparticles Prepared by Precipitation Method. Ibn AL-Haitham Journal For Pure and Applied Sciences 2022, 35, 94-103.
Tilahun Bekele, E.; Gonfa, B. A.; Sabir, F. K. Use of Different Natural Products to Control Growth of Titanium Oxide Nanoparticles in Green Solvent Emulsion, Characterization, and Their Photocatalytic Application. Bioinorganic Chemistry and Applications 2021.
Narayanan, M.; Vigneshwari, P.; Natarajan, D.; Kandasamy, S.; Alsehli, M.; Elfasakhany, A.; Pugazhendhi, A. Synthesis and Characterization of TiO2 NPs by Aqueous Leaf Extract of Coleus Aromaticus and Assess Their Antibacterial, Larvicidal, and Anticancer Potential. Environmental Research 2021, 200, 111335.
Zafar, M.N.; Dar, Q.; Nawaz, F.; Zafar, M.N.; Iqbal, M.; Nazar, M.F. Effective Adsorptive Removal of Azo Dyes Over Spherical ZnO Nanoparticles. Journal of Materials Research and Technology 2019, 8, 713-725.
Ho, Y. S. Second-Order Kinetic Model for the Sorption of Cadmium onto Tree Fern: A Comparison of Linear and Non-linear Methods. Water research 2006, 40, 119-125. DOI: https://doi.org/10.1016/j.watres.2005.10.040