Study the Effect of COVID-19 Disease on Thyroid Hormones (T3, T4, TSH) and the Lipid Profile in Recovering Iraqi Subjects

Main Article Content

Zainab Zouher Salman
Sanad Baqer Mohammed

Abstract

         The present pandemic of Coronavirus Disease 2019 (COVID-19) causes a multitude of lasting impacts on the human body. It has immediate and extensive effects on the human body, particularly the thyroid gland. A rise in adenylyl cyclase 2 (ACE2) and transmembrane serine protease 2 (TMPRESS2) makes it easier for viruses to get into human cells. COVID-19 triggers a hyperactive immune response that produces interleukin-6 (IL-6) and other pro-inflammatory cytokines. This hyperactive immune response leads to severe thyroid malfunction. The current study aimed to research the relationship between the recovering Iraqi subjects of COVID-19 and thyroid hormones and lipid profiles. This study aims to evaluate triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), and lipid profile including cholesterol, high-density lipoprotein (HDL), triglycerides (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). A total of 70 recovering subjects with COVID-19 were collected, and 50 were used as a control group. Thyroid hormones showed significant differences, an increase in serum TSH, and a decrease in the levels of T3 and T4 between the two groups (p= 0.001). The lipid profile revealed notable variations, as well as an increase in cholesterol, LDL, and VLDL. There was a notable drop in HDL levels between the two groups, as indicated through p-values of 0.001. Body mass index (BMI) and age did not show any significant differences. This research concludes that recovered people from COVID-19 had problems with their thyroid hormones and lipid profiles.

Article Details

How to Cite
[1]
Salman, Z.Z. et al. 2024. Study the Effect of COVID-19 Disease on Thyroid Hormones (T3, T4, TSH) and the Lipid Profile in Recovering Iraqi Subjects. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 247–254. DOI:https://doi.org/10.30526/37.4.3192.
Section
Chemistry

Publication Dates

Received

2023-01-14

Accepted

2023-03-14

Published Online First

2024-10-20

References

Jasim, R.Z. Biochemical Action of Vaccines in Iraqi Patients with COVID-19 Infection. Baghdad Science Journal 2023, 20(4 (SI)), 1469-1479.‏ https://doi.org/10.21123/bsj.2023.8750.

Parlikar, A.; Kalia, K.; Sinha, S.; Patnaik, S.; Sharma, N.; Vemuri, S.G.; Sharma, G. Understanding Genomic Diversity, Pan-Genome, and Evolution of SARS-Cov-2. Peer J 2020, 8, e9576.‏ https://doi.org/10.7717/peerj.9576.

Balasuriya, U.B.; Go, Y.Y.; Carossino, M. Coronaviridae and Tobaniviridae, 4th ed. Veterinary Microbiology, John Wiley & Sons, Inc., 2022, Ch. 61, pp. 622-658.‏ https://doi.org/10.1002/9781119650836.ch61.

Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; Freeburger, D. SARS-Cov-2 is Rapidly Inactivated at High Temperature. Environmental Chemistry Letters 2021, 19(2), 1773–1777. https://doi.org/10.1007/s10311-021-01187-x.

Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1(1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3.

Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS-Cov-2 Associated with the COVID-19 Outbreak. Current Biology:CB 2020, 30(7), 1346–1351. https://doi.org/10.1016/j.cub.2020.03.022 .

Hossain, M.G.; Javed, A.; Akter, S.; Saha, S. SARS-CoV-2 Host Diversity: An Update of Natural Infections and Experimental Evidence. Journal of Microbiology, Immunology and Infection 2021, 54(2), 175-181. https://doi.org/10.1016/j.jmii.2020.06.006.

Scappaticcio, L.; Pitoia, F.; Esposito, K.; Piccardo, A.; Trimboli, P. Impact of COVID-19 on the Thyroid Gland: An Update. Reviews in Endocrine and Metabolic Disorders 2021, 22(4), 803–815. https://doi.org/10.1007/s11154-020-09615-z.

Jain, U. Effect of COVID-19 on the Organs. Cureus 2020, 12(8), e9540. https://doi.org/ 10.7759/cureus.9540.

Gilbert, M.E.; O’Shaughnessy, K.L.; Axelstad, M. Regulation of Thyroid-Disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020, 161(10), bqaa106. https://doi.org/10.1210/endocr/bqaa106.

Grossklaus, R.; Liesenkötter, K.P.; Doubek, K.; Völzke, H.; Gaertner, R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023, 15(10), 2249.‏ https://doi.org/10.3390/nu15102249.

Crawford, A.; Harris, H. Tipping The Scales: Understanding Thyroid Imbalances. Nursing 2020 Critical Care 2013, 8(1), 23–28. https://doi.org/ 10.1097/01.CCN.0000418818.21604.22.

Hershman, J.M.; Beck-Peccoz, P. Discoveries Around the Hypothalamic–Pituitary–Thyroid Axis. Thyroid 2023, 33(7), 785-790.‏ https://doi.org/10.1089/thy.2022.0258.

Giannocco, G.; Kizys, M.M.L.; Maciel, R.M.; de Souza, J.S. Thyroid Hormone, Gene Expression, and Central Nervous System: Where We Are. Seminars in Cell & Developmental Biology 2021, 114, 47-56. Academic Press.‏ https://doi.org/10.1016/j.semcdb.2020.09.007.

Mohiuddin, A.K. Clinical Pharmacists in Chronic Care [Part 2]. Archives in Biomedical Engineering & Biotechnology 2020, 3(4), 1-41.‏ https://doi.org/ 10.33552/ABEB.2019.03.000566.

Mendez, D.A.; Soñanez-Organis, J.G.; Yang, X.; Vazquez-Anaya, G.; Nishiyama, A.; Ortiz, R.M. Exogenous Thyroxine Increases Cardiac GLUT4 Translocation in Insulin Resistant OLETF Rats. Molecular and Cellular Endocrinology 2024, 590, 112254. https://doi.org/10.1016/j.mce.2024.112254.

Barrea, L.; Caprio, M.; Grassi, D.; Cicero, A.F.G.; Bagnato, C.; Paolini, B.; Muscogiuri, G.A. New Nomenclature for the Very Low-Calorie Ketogenic Diet (VLCKD): Very Low-Energy Ketogenic Therapy (VLEKT). Ketodiets and Nutraceuticals Expert Panels:“KetoNut”, Italian Society of Nutraceuticals (SINut) and the Italian Association of Dietetics and Clinical Nutrition (ADI). Current Nutrition Reports 2024, 13(3), 552-556. https://doi.org/10.1007/s13668-024-00560-w.

Tagliabue, A.; Armeno, M.; Berk, K.A.; Guglielmetti, M.; Ferraris, C.; Olieman, J.; Van der Louw, E. Ketogenic Diet for Epilepsy and Obesity: Is It The Same?. Nutrition, Metabolism and Cardiovascular Diseases 2024, 34(3), 581-589.‏ https://doi.org/10.1016/j.numecd.2024.01.014.

Malik, J.; Malik, A.; Javaid, M.; Zahid, T.; Ishaq, U.; Shoaib, M. Thyroid Function Analysis in COVID-19: A Retrospective Study from A Single Center. PLOS One 2021, 16(3), e0249421. https://doi.org/10.1371/journal.pone.0249421.

Parihar, A.; Malviya, S.; Khan, R.; Kaushik, A.; Mostafavi, E. COVID-19 Associated Thyroid Dysfunction and Other Comorbidities and its Management Using Phytochemical-Based Therapeutics: A Natural Way. Bioscience Reports 2023, 43(7), BSR20230293.‏ https://doi.org/10.1042/BSR20230293.

Haldar, A.; Sethi, N. The Effect of Country-Level Factors and Government Intervention on the Incidence Of COVID-19. Asian Economics Letters 2020, 1(2), 17804. https://doi.org/10.46557/001c.17804.

Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. Age-Dependent Effects in the Transmission and Control of COVID-19 Epidemics. Nature Medicine 2020, 26(8), 1205–1211 https://doi.org/10.1038/s41591-020-0962-9.

Shah, H.; Khan, M.S.H.; Dhurandhar, N. V; Hegde, V. The Triumvirate: Why Hypertension, Obesity, and Diabetes are Risk Factors for Adverse Effects in Patients with COVID-19. Acta Diabetologica 2021, 58(7), 831–843. https://doi.org/10.1007/s00592-020-01636-z.

Chu, Y.; Yang, J.; Shi, J.; Zhang, P.; Wang, X. Obesity is Associated with Increased Severity of Disease in COVID-19 Pneumonia: A Systematic Review and Meta-Analysis. European Journal of Medical Research 2020, 25(1), 1–15. https://doi.org/10.1186/s40001-020-00464-9.

Chen, M.; Zhou, W.; Xu, W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid 2021, 31(1), 8–11. https://doi.org/10.1089/thy.2020.0363.

Clarke, S.A.; Phylactou, M.; Patel, B.; Mills, E.G.; Muzi, B.; Izzi-Engbeaya, C.; Choudhury, S.; Khoo, B.; Meeran, K.; Comninos, A.N. Normal Adrenal and Thyroid Function in Patients Who Survive COVID-19 Infection. The Journal of Clinical Endocrinology and Metabolism 2021, 106(8), 2208–2220. https://doi.org/10.1210/clinem/dgab349.

Mohammed, A.H.; Yousif, A.M.; Jabbar, S.A.; Ismail, P.A. Assessment of Thyroid Function in COVID-19 Patients. Tabari Biomedical Student Research Journal 2021, 3(3), 8-13. ‏ https://doi.org/10.18502/tbsrj.v3i3.6930.

Pecon-Slattery, J. Recent Advances in Primate Phylogenomics. Annual Review of Animal Biosciences 2014, 2, 41-63. https://doi.org/10.1146/annurev-animal-022513-114217.

Roccaforte, V.; Daves, M.; Lippi, G.; Spreafico, M.; Bonato, C. Altered Lipid Profile in Patients with COVID-19 Infection. Journal of Laboratory and Precision 2021, 6(2), 1-8. https://doi.org/10.21037/jlpm-20-98.

Taha, E.M.; Al-Taweil, H.I.; Noura, K.M.S.; Yusoff, W.M.W.; Omar, O.; Hamid, A.A. Biochemical Characterization for Lipid Synthesis in Aspergillus niger. Baghdad Science Journal 2016, 13(2.2 NCC), 0375-0375.‏ https://doi.org/10.21123/bsj.2016.13.2.2NCC.0375.