Study the Effect of COVID-19 Disease on Thyroid Hormones (T3, T4, TSH) and the Lipid Profile in Recovering Iraqi Subjects

Authors

DOI:

https://doi.org/10.30526/37.4.3192

Keywords:

Thyroid Hormones, Lipid profile, SARS-CoV-2, Recovered Covid-19

Abstract

         The present pandemic of Coronavirus Disease 2019 (COVID-19) causes a multitude of lasting impacts on the human body. It has immediate and extensive effects on the human body, particularly the thyroid gland. A rise in adenylyl cyclase 2 (ACE2) and transmembrane serine protease 2 (TMPRESS2) makes it easier for viruses to get into human cells. COVID-19 triggers a hyperactive immune response that produces interleukin-6 (IL-6) and other pro-inflammatory cytokines. This hyperactive immune response leads to severe thyroid malfunction. The current study aimed to research the relationship between the recovering Iraqi subjects of COVID-19 and thyroid hormones and lipid profiles. This study aims to evaluate triiodothyronine (T3), thyroxine (T4), thyroid stimulating hormone (TSH), and lipid profile including cholesterol, high-density lipoprotein (HDL), triglycerides (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL). A total of 70 recovering subjects with COVID-19 were collected, and 50 were used as a control group. Thyroid hormones showed significant differences, an increase in serum TSH, and a decrease in the levels of T3 and T4 between the two groups (p= 0.001). The lipid profile revealed notable variations, as well as an increase in cholesterol, LDL, and VLDL. There was a notable drop in HDL levels between the two groups, as indicated through p-values of 0.001. Body mass index (BMI) and age did not show any significant differences. This research concludes that recovered people from COVID-19 had problems with their thyroid hormones and lipid profiles.

References

Jasim, R.Z. Biochemical Action of Vaccines in Iraqi Patients with COVID-19 Infection. Baghdad Science Journal 2023, 20(4 (SI)), 1469-1479.‏ https://doi.org/10.21123/bsj.2023.8750.

Parlikar, A.; Kalia, K.; Sinha, S.; Patnaik, S.; Sharma, N.; Vemuri, S.G.; Sharma, G. Understanding Genomic Diversity, Pan-Genome, and Evolution of SARS-Cov-2. Peer J 2020, 8, e9576.‏ https://doi.org/10.7717/peerj.9576.

Balasuriya, U.B.; Go, Y.Y.; Carossino, M. Coronaviridae and Tobaniviridae, 4th ed. Veterinary Microbiology, John Wiley & Sons, Inc., 2022, Ch. 61, pp. 622-658.‏ https://doi.org/10.1002/9781119650836.ch61.

Biryukov, J.; Boydston, J.A.; Dunning, R.A.; Yeager, J.J.; Wood, S.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N.E.; Freeburger, D. SARS-Cov-2 is Rapidly Inactivated at High Temperature. Environmental Chemistry Letters 2021, 19(2), 1773–1777. https://doi.org/10.1007/s10311-021-01187-x.

Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in Different Environmental Conditions. Lancet Microbe 2020, 1(1), e10. https://doi.org/10.1016/S2666-5247(20)30003-3.

Zhang, T.; Wu, Q.; Zhang, Z. Probable Pangolin Origin of SARS-Cov-2 Associated with the COVID-19 Outbreak. Current Biology:CB 2020, 30(7), 1346–1351. https://doi.org/10.1016/j.cub.2020.03.022 .

Hossain, M.G.; Javed, A.; Akter, S.; Saha, S. SARS-CoV-2 Host Diversity: An Update of Natural Infections and Experimental Evidence. Journal of Microbiology, Immunology and Infection 2021, 54(2), 175-181. https://doi.org/10.1016/j.jmii.2020.06.006.

Scappaticcio, L.; Pitoia, F.; Esposito, K.; Piccardo, A.; Trimboli, P. Impact of COVID-19 on the Thyroid Gland: An Update. Reviews in Endocrine and Metabolic Disorders 2021, 22(4), 803–815. https://doi.org/10.1007/s11154-020-09615-z.

Jain, U. Effect of COVID-19 on the Organs. Cureus 2020, 12(8), e9540. https://doi.org/ 10.7759/cureus.9540.

Gilbert, M.E.; O’Shaughnessy, K.L.; Axelstad, M. Regulation of Thyroid-Disrupting Chemicals to Protect the Developing Brain. Endocrinology 2020, 161(10), bqaa106. https://doi.org/10.1210/endocr/bqaa106.

Grossklaus, R.; Liesenkötter, K.P.; Doubek, K.; Völzke, H.; Gaertner, R. Iodine Deficiency, Maternal Hypothyroxinemia and Endocrine Disrupters Affecting Fetal Brain Development: A Scoping Review. Nutrients 2023, 15(10), 2249.‏ https://doi.org/10.3390/nu15102249.

Crawford, A.; Harris, H. Tipping The Scales: Understanding Thyroid Imbalances. Nursing 2020 Critical Care 2013, 8(1), 23–28. https://doi.org/ 10.1097/01.CCN.0000418818.21604.22.

Hershman, J.M.; Beck-Peccoz, P. Discoveries Around the Hypothalamic–Pituitary–Thyroid Axis. Thyroid 2023, 33(7), 785-790.‏ https://doi.org/10.1089/thy.2022.0258.

Giannocco, G.; Kizys, M.M.L.; Maciel, R.M.; de Souza, J.S. Thyroid Hormone, Gene Expression, and Central Nervous System: Where We Are. Seminars in Cell & Developmental Biology 2021, 114, 47-56. Academic Press.‏ https://doi.org/10.1016/j.semcdb.2020.09.007.

Mohiuddin, A.K. Clinical Pharmacists in Chronic Care [Part 2]. Archives in Biomedical Engineering & Biotechnology 2020, 3(4), 1-41.‏ https://doi.org/ 10.33552/ABEB.2019.03.000566.

Mendez, D.A.; Soñanez-Organis, J.G.; Yang, X.; Vazquez-Anaya, G.; Nishiyama, A.; Ortiz, R.M. Exogenous Thyroxine Increases Cardiac GLUT4 Translocation in Insulin Resistant OLETF Rats. Molecular and Cellular Endocrinology 2024, 590, 112254. https://doi.org/10.1016/j.mce.2024.112254.

Barrea, L.; Caprio, M.; Grassi, D.; Cicero, A.F.G.; Bagnato, C.; Paolini, B.; Muscogiuri, G.A. New Nomenclature for the Very Low-Calorie Ketogenic Diet (VLCKD): Very Low-Energy Ketogenic Therapy (VLEKT). Ketodiets and Nutraceuticals Expert Panels:“KetoNut”, Italian Society of Nutraceuticals (SINut) and the Italian Association of Dietetics and Clinical Nutrition (ADI). Current Nutrition Reports 2024, 13(3), 552-556. https://doi.org/10.1007/s13668-024-00560-w.

Tagliabue, A.; Armeno, M.; Berk, K.A.; Guglielmetti, M.; Ferraris, C.; Olieman, J.; Van der Louw, E. Ketogenic Diet for Epilepsy and Obesity: Is It The Same?. Nutrition, Metabolism and Cardiovascular Diseases 2024, 34(3), 581-589.‏ https://doi.org/10.1016/j.numecd.2024.01.014.

Malik, J.; Malik, A.; Javaid, M.; Zahid, T.; Ishaq, U.; Shoaib, M. Thyroid Function Analysis in COVID-19: A Retrospective Study from A Single Center. PLOS One 2021, 16(3), e0249421. https://doi.org/10.1371/journal.pone.0249421.

Parihar, A.; Malviya, S.; Khan, R.; Kaushik, A.; Mostafavi, E. COVID-19 Associated Thyroid Dysfunction and Other Comorbidities and its Management Using Phytochemical-Based Therapeutics: A Natural Way. Bioscience Reports 2023, 43(7), BSR20230293.‏ https://doi.org/10.1042/BSR20230293.

Haldar, A.; Sethi, N. The Effect of Country-Level Factors and Government Intervention on the Incidence Of COVID-19. Asian Economics Letters 2020, 1(2), 17804. https://doi.org/10.46557/001c.17804.

Davies, N.G.; Klepac, P.; Liu, Y.; Prem, K.; Jit, M.; Eggo, R.M. Age-Dependent Effects in the Transmission and Control of COVID-19 Epidemics. Nature Medicine 2020, 26(8), 1205–1211 https://doi.org/10.1038/s41591-020-0962-9.

Shah, H.; Khan, M.S.H.; Dhurandhar, N. V; Hegde, V. The Triumvirate: Why Hypertension, Obesity, and Diabetes are Risk Factors for Adverse Effects in Patients with COVID-19. Acta Diabetologica 2021, 58(7), 831–843. https://doi.org/10.1007/s00592-020-01636-z.

Chu, Y.; Yang, J.; Shi, J.; Zhang, P.; Wang, X. Obesity is Associated with Increased Severity of Disease in COVID-19 Pneumonia: A Systematic Review and Meta-Analysis. European Journal of Medical Research 2020, 25(1), 1–15. https://doi.org/10.1186/s40001-020-00464-9.

Chen, M.; Zhou, W.; Xu, W. Thyroid Function Analysis in 50 Patients with COVID-19: A Retrospective Study. Thyroid 2021, 31(1), 8–11. https://doi.org/10.1089/thy.2020.0363.

Clarke, S.A.; Phylactou, M.; Patel, B.; Mills, E.G.; Muzi, B.; Izzi-Engbeaya, C.; Choudhury, S.; Khoo, B.; Meeran, K.; Comninos, A.N. Normal Adrenal and Thyroid Function in Patients Who Survive COVID-19 Infection. The Journal of Clinical Endocrinology and Metabolism 2021, 106(8), 2208–2220. https://doi.org/10.1210/clinem/dgab349.

Mohammed, A.H.; Yousif, A.M.; Jabbar, S.A.; Ismail, P.A. Assessment of Thyroid Function in COVID-19 Patients. Tabari Biomedical Student Research Journal 2021, 3(3), 8-13. ‏ https://doi.org/10.18502/tbsrj.v3i3.6930.

Pecon-Slattery, J. Recent Advances in Primate Phylogenomics. Annual Review of Animal Biosciences 2014, 2, 41-63. https://doi.org/10.1146/annurev-animal-022513-114217.

Roccaforte, V.; Daves, M.; Lippi, G.; Spreafico, M.; Bonato, C. Altered Lipid Profile in Patients with COVID-19 Infection. Journal of Laboratory and Precision 2021, 6(2), 1-8. https://doi.org/10.21037/jlpm-20-98.

Taha, E.M.; Al-Taweil, H.I.; Noura, K.M.S.; Yusoff, W.M.W.; Omar, O.; Hamid, A.A. Biochemical Characterization for Lipid Synthesis in Aspergillus niger. Baghdad Science Journal 2016, 13(2.2 NCC), 0375-0375.‏ https://doi.org/10.21123/bsj.2016.13.2.2NCC.0375.

Downloads

Published

20-Oct-2024

Issue

Section

Chemistry

Publication Dates

Received

2023-01-14

Accepted

2023-03-14

Published Online First

2024-10-20