The effect of phonons-surface and grain-boundary scattering on electrical properties of metallic Ag

Authors

  • Fairooz A. Meteab Department of Physics, College of Education for Pure Science Ibn-AL-Haitham, University of Baghdad, Baghdad, Iraq.
  • May A. S. Mohammed Department of Physics, College of Education for Pure Science Ibn-AL-Haitham, University of Baghdad, Baghdad, Iraq.
  • Ulvi Kanbur Karabuk University, Karabuk, Turkey

DOI:

https://doi.org/10.30526/36.4.3234

Keywords:

Surface scattering Coefficientp, mean free pathL, grain boundary reflection coefficientR, electrical resistivity,

Abstract

Explain in this study, thickness has an inverse relationship with electrical resistivity and a linear relationship with Grain boundary scattering. According to the (Fuchs-Sondheier, Mayadas-Shatzkces) model, grain boundary scattering leads To an Increase in electrical Resistivity. The surface scattering Coefficient  of Ag, which Fuchs-Sondheier and Mayadas-Shatzkces measured at , Ag's grain boundary reflection coefficient , which Mayadas-Shatzkces measured at , If the concentration of material has an effect on metal's electrical properties, According to this silver is a good electrical conductor and is used frequently in electrical and electronic circuits.

References

KANTKR, H.Slow-Electron Mean Free Paths in Aluminum, Silver, and Gold) H., Phys. Rev. B, 1970, 1, 2, doi: 10.1103/PhysRevB.1.522. DOI: https://doi.org/10.1103/PhysRevB.1.522

Mayadas, A. F.; Shatzkes, M. Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces, Phys. Rev. B, 1970,1, 4, doi: 10.1103/PhysRevB.1.1382. DOI: https://doi.org/10.1103/PhysRevB.1.1382

Pawlek, F.; Rogalla, D. The electrical resistivity of silver, copper, aluminium, and zinc as a function of purity in the range 4-298° K,Cryogenics (Guildf)., 1966, 6, 1, 14–20, doi: 10.1016/S0011-2275(96)90056-9. DOI: https://doi.org/10.1016/S0011-2275(96)90056-9

J. W. C. De Vries, Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films, Thin Solid Films, 1988, 167, 25–32, doi: 10.1016/0040-6090(88)90478-6. DOI: https://doi.org/10.1016/0040-6090(88)90478-6

Ding, G.; Clavero, C.; Schweigert D., ; M. Le, Thickness and microstructure effects in the optical and electrical properties of silver thin films, AIP Adv., 2015, 5, 11, doi: 10.1063/1.4936637. DOI: https://doi.org/10.1063/1.4936637

Jin ,J. S.; Lee, J. S.; Kwon, O. Electron effective mean free path and thermal conductivity predictions of metallic thin films, Appl. Phys. Lett., 2008,92, 17, doi: 10.1063/1.2917454. DOI: https://doi.org/10.1063/1.2917454

Zhang, W.et al., Influence of the electron mean free path on the resistivity of thin metal films, Microelectron. Eng., 2004, 76, 146–152, doi: 10.1016/j.mee.2004.07.041. DOI: https://doi.org/10.1016/j.mee.2004.07.041

Artunç, N.; Bilge, M. D. ; Utlu, G. The effects of grain boundary scattering on the electrical resistivity of single-layered silver and double-layered silver/chromium thin films, Surf. Coatings Technol., 2007,201, 8377–8381, doi: 10.1016/j.surfcoat.2006.03.068. DOI: https://doi.org/10.1016/j.surfcoat.2006.03.068

Tsuda, Y.; Omoto, H.; Tanaka, K.; Ohsaki, H. The underlayer effects on the electrical resistivity of Ag thin film, Thin Solid Film. 502, 2006, 502, 223–227, doi: 10.1016/j.tsf.2005.07.279. DOI: https://doi.org/10.1016/j.tsf.2005.07.279

Moraga, L.; Arenas, C.; Henriquez ,R.; Bravo, S.; Solis, B. The electrical conductivity of polycrystalline metallic films, Phys. B Condens. Matter, 2016,499, 17–23, doi: 10.1016/j.physb.2016.07.001. DOI: https://doi.org/10.1016/j.physb.2016.07.001

U. L. A. Shiva L. U*, N. H. Ayachit, Electrical and microstructural properties of silver thin films , Accepted Manuscript – Note to users,” Nanoelectron. Mater., 2008,12, 2, 221–236,https://ijneam.unimap.edu.my/images/PDF/AIP%20APR%2019/OJS%2079_Final.pdf.

Tanner, D. B. ; LARSONj, A. D. C. Electrical Resistivity of Silver Films*, Phys. Rev., 1968,166, 3, 652–655, doi: https://doi.org/10.1103/PhysRev.166.652. DOI: https://doi.org/10.1103/PhysRev.166.652

Cho M. Y. Formation of silver films for advanced electrical properties by using aerosol deposition process, Jpn. J. Appl. Phys., 2018, 57, 11, doi: 10.7567/JJAP.57.11UF05.

He, G. C. Effect of temperature dependent electronics surface and grainboundary scattering on resistivity of polycrystalline silver nanowire fabricated by two-beam laser fabrication technique, Appl. Surf. Sci., 2019, 488, 46–50, doi: 10.1016/j.apsusc.2019.05.225.

Wißmann, P.; Finzel, H. U. The effect of annealing on the electrical resistivity of thin silver films,” Springer Tracts Mod. Phys., 2007,223, 9–34, doi: 10.1007/3-540-48490-6_3. DOI: https://doi.org/10.1007/3-540-48490-6_3

Lim, J. W.; Mimura, K.; Isshiki, M. Thickness dependence of resistivity for Cu films deposited by ion beam deposition, Appl. Surf. Sci., 2003, 217, 95–99, doi: 10.1016/S0169-4332(03)00522-1. DOI: https://doi.org/10.1016/S0169-4332(03)00522-1

Downloads

Published

20-Oct-2023

Issue

Section

Physics

Publication Dates