An Assessment of Glutathione-S-Transferase and Lipid Profile in Obese Iraqi Patients
Main Article Content
Abstract
Obesity is a chronic disease that may have genetic, environmental, and other causes. Obesity is a shortcut to many diseases, such as hypertension, diabetes, atherosclerosis, and other chronic diseases. Oxidative stress increases obesity through free radicals. Glutathione S-transferase (GST) is a metabolic enzyme used to remove toxins. This study aimed to determine GST activity in obese patients as a predictor of oxidative stress and the effectiveness of lipid profiling in obese patients. The study included 139 samples of obese and healthy people (obese group 84 and healthy group 55). Both groups (obese and healthy groups) were divided into four groups based on body mass index. Blood samples were collected from obese males and females in Al-Yarmouk Hospital. Some biochemical parameters were measured for all study groups, including estimation of lipid profile, FSG, and GST activity. Results have shown a significant increase in low-density lipoprotein cholesterol (LDL-C) in obese groups and showed a rise in GST levels in healthy groups compared with obese groups (p < 0.05). These studies show that being overweight or obese makes you more likely to get heart disease and other illnesses. It has been demonstrated that the slightly lower levels of GST in the overweight and obese groups compared to other groups demonstrate the precise role of GST in its decrease with weight gain, along with an increase in LDL-C level.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Almoshabek, H.A.; Mustafa, M.; Al-Asmari, M.M.; Alajmi, T.K.; Al-Asmari, A.K. Association of glutathione S-transferase GSTM1 and GSTT1 deletion polymorphisms with obesity and their relationship with body mass index, lipoprotein and hypertension among young age Saudis. JRSM cardiovascular disease. 2016, 5:2048004016669645. https://doi: 10.1177/2048004016669645. DOI: https://doi.org/10.1177/2048004016669645
Etihad, K.T; Alrubaie, A.; Ghanim, S.A. The link between serum omentin level and insulin resistance biomarkers, lipid profile, and atherogenic indices in Iraqi obese patients. Baghdad Science Journal, 2023, 20(1),0074-0074. https://doi.org/10.21123/bsj.2022.6535.
Fawzy, M.S.; Alhadramy, O.; Hussein, M.H.; Ismail, H.M.; Ismail, N.M.; Biomy, N.M.; Toraih, E.A. Functional and structural impact of ATP-binding cassette transporter A1 R219K and I883M gene polymorphisms in obese children and adolescents. Mol. Diagn. Ther. 2015, 19(4), 221–234. https://doi: 10.1007/s40291-015-0150-7. DOI: https://doi.org/10.1007/s40291-015-0150-7
Meloni, A.; Cadeddu, C.; Cugusi, L.; Donataccio, M.P.; Deidda, M.; Sciomer, S.; Maffei, S. Gender differences and cardiometabolic risk: the importance of the risk factors. International Journal of Molecular Sciences, 2023,24(2),1588. https://doi: 10.3390/ijms24021588.
Manna, P.; Jain, S.K. Obesity, Oxidative Stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015, 13(10), 423–444. https://doi: 10.1089/met.2015.0095. DOI: https://doi.org/10.1089/met.2015.0095
Gusti, A,M.; Qusti, S.Y.; Alshammari, E.M.; Toraih, E.A.; Fawzy, M.S. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A Preliminary case-control study. Antioxidants. 2021,10(4):595. https://doi: 10.3390/antiox10040595.
Colak, E.; Pap, D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J. Med. Biochem. 2021, 40(1), 1–9. https://doi: 10.5937/jomb0-24652.
Lustig, R. H., Collier, D., Kassotis, C., Roepke, T. A., Kim, M. J., Blanc, E., Barouki, R.; Bansal, A.; Cave , M.C.; Chatterjee, S.; Choudhury , M.; Gilbertson, M.; Lagadic-Gossmann, D.; Howard, S.; Lind, L.; Tomlinson, C.R.; Vondracek, J.; Heindel, J.J. Obesity I: Overview and molecular and biochemical mechanisms. Biochemical Pharmacology, 2022, 199, 115012. https://doi: 10.1016/j.bcp.2022.115012.
Moreno-Fernandez, J.; Ochoa, J.; Ojeda, M.L.; Nogales, F.; Carreras, O.; Diaz-Castro, J. Inflammation and oxidative stress, the links between obesity and COVID-19: A narrative review. Journal of physiology and biochemistry, 2022, 78(3), 581-591. https://doi: 10.1007/s13105-022-00887-4.
Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. Journal of cellular physiology, 2021,236(12), 7966-7983. https://doi: 10.1002/jcp.30468.
Picklo, M.J.; Long, E.K.; Vomhof-DeKrey, E.E. Glutathionyl systems and metabolic dysfunction in obesity. Nutr. Rev. 2015, 73(12), 858–868. https://doi: 10.1093/nutrit/nuv042. DOI: https://doi.org/10.1093/nutrit/nuv042
Yang, Q.; Vijayakumar, A.; Kahn, B.B Metabolites as regulators of insulin sensitivity and metabolism. Nature reviews Molecular cell biology. 2018, 19(10), 654-672. https://doi: 10.1038/s41580-018-0044-8.
Zhelev, Z.; Aoki, I.; Lazarova, D.; Vlaykova, T.; Higashi, T.; Bakalova, R.A. “weird” mitochondrial fatty acid oxidation as a metabolic “secret” of cancer. Oxidative Medicine and Cellular Longevity, 2022, 2022, 2339584. https://doi.org/ 10.1155%2F2022%2F2339584.
Langhans, W. Food components in health promotion and disease prevention. J. Agric. Food Chem. 2017, 66(10),2287-94. https://doi: 10.1021/acs.jafc.7b02121. DOI: https://doi.org/10.1021/acs.jafc.7b02121
Sari, M.I.; Tala, Z.Z.; Daulay, M. Dietary intake and glutathione s-transferase (m1 and t1) variants in type 2 diabetes mellitus at USU hospital, Medan, Indonesia. J Diabetes Nutr Metab Dis. 2021,28(1),77-83. https://www.rjdnmd.org/ index. php/ RJDNMD/article/view/814.
Senhaji, N.; Kassogue, Y.; Fahimi, M.; Serbati, N.; Badre, W.; Nadifi, S. Genetic polymorphisms of multidrug resistance gene-1 (MDR1/ABCB1) and glutathione S-transferase gene and the risk of inflammatory bowel disease among Moroccan patients. Mediators Inflamm. 2015,2015, 248060. https://doi.org/10.1155%2F2015%2F248060. DOI: https://doi.org/10.1155/2015/248060
Al Fleafil, S.J.; Al Faisal, A.H.; Mahood, R.A. Association between GSTM1, GSTT1
Genes Variants and Some Physiological Parameters in Infertility Patients. IJB. 2021, 1(20). https://jige.uobaghdad.edu.iq/index.php/IJB/article/view/416
Abdulla, J.M.; Al-Okaily, B.N. Histomorphometric and histopathological alterations of rat testis following exposure to hydrogen peroxide: Protective role of resveratrol supplement. The Iraqi Journal of Veterinary Medicine, 2022, 46(1),17-23. https://doi.org/10.30539/ijvm.v46i1.131.
Baioumi A.Y. Comparing measures of obesity: waist circumference, waist-hip, and waist-height ratios. Nutrition in the Prevention and Treatment of Abdominal Obesity 2019, 29-40. Academic Press.
https://doi.org/10.1016/B978-0-12-816093-0.00003-3.
Tirado, R.; Masdeu, M.J.; Vigil, L.; Rigla, M.; Luna, A.; Rebasa, P.; Pareja, R.; Hurtado, M.; Caixàs, A. Impact of bariatric surgery on heme oxygenase-1, inflammation, and insulin resistance in morbid obesity with obstructive sleep apnea. Obesity surgery. 2017, 27(9),2338-2346. https://doi: 10.1007/s11695-017-2635-4. DOI: https://doi.org/10.1007/s11695-017-2635-4
Carmona-Montesinos, E; Velazquez-Perez, R.; Pichardo, A.E.; Rivas-Arancibia, S. Obesity, oxidative stress, and their effect on serum heme oxygenase-1 concentrations and insulin in children aged 3 to 5 years in a pediatric hospital of the Ministry of Health CDMX. Childhood Obesity. 2016,12(6),474-81. https://doi: 10.1089/chi.2016.0155. DOI: https://doi.org/10.1089/chi.2016.0155
Al-Thuwaini, T.M. Body mass index and shortened telomere length in middle-aged female and male RUNNING HEAD: Middle-aged and shortened telomere length. Baghdad Science Journal. 2022,19(2), 0246. https://doi.org/10.21123/bsj.2022.19.2.0246.
Lin, Xihua, and Hong Li. Obesity: epidemiology, pathophysiology, and therapeutics. Frontiers in endocrinology, 2021, 12: 706978. https://doi.org/10.3389/fendo.2021.706978
Abraham, N.G.; unge, J.M.; Drummond, G.S. Translational significance of heme oxygenase in obesity and metabolic syndrome. Trends in pharmacological sciences, 2016, 37(1), 17-36. https://doi:10.1016/j.tips.2015.09.003. DOI: https://doi.org/10.1016/j.tips.2015.09.003
Preeti, K.; Chitra, S.; Anupama, G. Correlation of cholesterol ratios and conventional isolated lipid parameters as cardiovascular risk markers to anthropometric and hemodynamic variables in healthy overweight/obese subjects. National Journal of Physiology, Pharmacy and Pharmacology, 2022, 12(12), 2172-2178
Saeid, R.; Doustjalali, S.R.; Sabet, N.S.; Khalaf, A.T. Correlation between body mass index (BMI) & waist to hip ratio (WHR) among primary school students. International Journal of Pharmaceutical Research, 2020,12(3),623-629.http://dx.doi.org/10.31838/ijpr/2020.12.03.091.
Hassan, E.A.; Al-Zuhairi, W.S.; Ahmed, M.A. Serum cortisol and BMI in chronic diseases and increased early cardiovascular diseases. Baghdad Science Journal, 2016,13(2.2 NCC), 0399-0399. https://doi.org/10.21123/bsj.2016.13.2.2NCC.0399 DOI: https://doi.org/10.21123/bsj.2016.13.2.2NCC.0399
Yilmaz, C.; Bulus, H.; Oguztuzun, S.; Cihan, M.; Fidan, C. The activities of GST isozymes in stomach tissues of female obese patients. Turkish Journal of Biochemistry, 2020, 45(6), 883-889. https://doi.org/10.1515/tjb-2020-023.
Stępień, A.; Stępień, M.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Assessment of the relationship between lipid parameters and obesity indices in non-diabetic obese patients: a preliminary report. Medical science monitor: international medical journal of experimental and clinical research, 2014, 20, 2683. https://doi.org/10.12659%2FMSM.890845.
Hazart, J.; Montel, F.; Gentes, E.; Lahaye, C.; Pouget ,M.; Farigon, N.; Miolanne, M.; Mulliez, A.; Boirie, Y. Body mass trajectory affects the long-term occurrence of metabolic syndrome in adult patients with severe obesity. Children. 2023,10(1):27. https://doi.org/10.3390%2Fchildren10010027.