Isolation and Identification of Endophytic Fungi from Aloe vera Leaves and Chemical Analysis of the Alcoholic Extract of the Leaves Using HPLC, GC, and GC-Mass Devices

Main Article Content

Mohammed Ali Abdul Razzaq Al Nuaimy
Sumaiya Naeema Hawar

Abstract

The study's goals were to separate and identify endophytic fungi from Aloe vera leaves by looking at their morphology and molecules, as well as to find the chemical compounds in the leaf extract by using HPLC, GC, and GC-Mass instruments. The results showed that 53 endophytic fungi were isolated from a total of 120 pieces of A. vera leaves, with a total colonization rate of 44.16%. The fungus Aspergillus terreus had a colonization rate of 14.16%; Aspergillus niger had a colonization rate of 13.33%; Penicillium chermesinum demonstrated a colonization rate of 6.66%; Paecilomyces variotii had a colonization rate of 2.5%; Talaromyces radicus; and Aspergillus flavus achieved a colonization rate of 1.66%. Finally, the fungi Aspergillus quadrilineatus, Talaromyces verruculosus, Neoscytalidium dimidiatum, Alternaria solani, and Aspergillus niveus achieved a colonization rate of 0.83%. The results of examining the alcoholic extract of the leaves using the HPLC device showed the presence of the chemical compounds aloin at a concentration of 125.39 ppm and aloe emodin at a concentration of 66.59 ppm. We looked at the leaf alcoholic extract with a GC machine and found a group of fatty acids. These included linoleic, oleic, palmitic, and stearic. The GC-MS test revealed a group of active compounds, including Heptane, 1-(ethenylthio), Ethanedicarboxamide, N-allyl-N'-(2,5-dimethylphenyl), 2H-Pyran, 2-(3-butynyloxy) tetrahydro, 1,2-Cyclobutanedicarboxylic acid, 3-methyl-dimethyl ester and 4 (1H)-Pyrimidinone, 2-(propylthio). The presence of endophytic fungi from which effective enzymes or compounds can be isolated could probably have an important role in future medical and therapeutic uses. Also, the leaves of the A. vera plant have medicinal and therapeutic uses for many diseases.

Article Details

How to Cite
Isolation and Identification of Endophytic Fungi from Aloe vera Leaves and Chemical Analysis of the Alcoholic Extract of the Leaves Using HPLC, GC, and GC-Mass Devices. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 101-117. https://doi.org/10.30526/37.1.3254
Section
Biology

How to Cite

Isolation and Identification of Endophytic Fungi from Aloe vera Leaves and Chemical Analysis of the Alcoholic Extract of the Leaves Using HPLC, GC, and GC-Mass Devices. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 101-117. https://doi.org/10.30526/37.1.3254

Publication Dates

References

Basit, A.; Shah, S. T.; Ullah, I.; Ullah, I.; Mohamed, H. I. Microbial bioactive compounds produced by endophytes (bacteria and fungi) and their uses in plant health. Plant Growth Promot. Microb. Sustain. Biotic Abiotic Stress Manag., 2021; 285-318.‏

Jin, J.; Zhao, Q.; Zhang, X. M.; Li, W. J. Research progress on bioactive products from endophytes. J. Microbiol., 2018; 38, 103-113.‏

Wen, J.; Okyere, S.K.; Wang, S.; Wang, J.; Xie, L.; Ran, Y.; Hu, Y. Endophytic fungi: an effective alternative source of plant-derived bioactive compounds for pharmacological studies. J. Fungi, 2022; 8, 2, 205.‏

Mohammed, G.M.; Hawar, S. N. Green biosynthesis of silver nanoparticles from Moringa oleifera leaves and its antimicrobial and cytotoxicity activities. ‏ Int. J. Biomaterials, 2022.

Mondal, M. I. H.; Saha, J.; Rahman, M. A. Functional applications of aloe vera on textiles: A review. J. Polym. Environ., 2021; 29, 993-1009.‏

Chatterjee, P.; Chakraborty, B.; Nandy, S. Aloe vera plant: Review with significant pharmacological activities. Mintage J. Pharm. Med. Sci., 2013; 2, 3, 21-24.

Ameen, F.; Stephenson, S. L.; AlNadhari, S.; Yassin, M. A. Isolation, identification and bioactivity analysis of an endophytic fungus isolated from Aloe vera collected from Asir desert, Saudi Arabia. Bioprocess Biosyst. Eng., 2021; 44, 6, 1070-1063.

Pitt, J.I. Alaboratory guide to common Penicillum species. CSIRO Division of food processing, North Ryde, Ausrralia, 1988.

Williams-Wood, W.J. Simplified fungi identification key. The University of Georgina college of agriculture and environmental Sciences, 2001; 188 .

Samson, R.A.; Noonim, P.; Merjer, M.; Houbraken, J.; Frisvad, J.C.; Varga, J. Diagnostic tools to identify black aspergilli. Stud. Mycol., 2007; 59, 129-145.

Goveas, S.W.; Madtha, R.; Nivas, S.K. ; Dsouza, L. Isolation of endophytic fungi from Coscinium fenestratum -a red listed endangered medicinal plant. EurAsian J. Biosci., 2011; 5, 48-53.

Logaranjan, K.; Devasena, T.; Pandian, K. Quantitative detection of aloin and related compounds present in herbal products and Aloe vera plant extract using HPLC method. Am. J. Analyt. Chem.; 2013.‏

Zhang, H.; Wang, Z.; Liu, O. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids. J. Pharm. Analy. 2015; 5, 4, 223-230.

AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 16th Edition. AOAC International, Gaithersburg, MD. 1995.

Iordache, A.; Culea, M.; Gherman, C.; Cozar, O. Characterization of some plant extracts by GC–MS. Nuclear Inst. Methods Phys. Res. Section B: Beam Interac. Mater. Atoms, 2009; 267, 2, 338-342.

Alazzawi, G.M.M. Isolation and identification of endophytic fungi from Moringa sp. plant leaves and biosynthesis of silver nanoparticales from leaves extract and study the antibiological activity against some pathogenic microorganisms. M.Sc. thesis, College of Education for Pure Sciences -Ibn Al-Haitham, University of Baghdad: Iraq, 2022;104.

El-Sayed, A. S.; Khalaf, S. A.; Azez, H. A.; Hussein, H. A.; EL-Moslamy, S. H.; Sitohy, B.; El-Baz, A. F. Production, bioprocess optimization and anticancer activity of Camptothecin from Aspergillus terreus and Aspergillus flavus, endophytes of Ficus elastica. Process Biochem., 2021; 107, 59-73.‏

Schoch, C.; Seifert, K.A.; Huhndrof, S. ; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Consortium, F.B. Nuclear ribosomal internal transcribed spacer region as a universal DNA barcode marker for Fungi. PNAS., 2012; 109, 16, 6241- 6246.

Ali, B.Z.; Kadhoam, H. M. Endophytic Fungi of Myrtle (Myrtus communis) and their Extracellular Enzyme Activity. Ibn Al-Haitham J. Pure Appl. Sci., 2014; 27, 3, 152-163.

Hawar, S. N. Extracellular Enzyme of Endophytic Fungi Isolated from Ziziphus spina Leaves as Medicinal Plant. Int. J. Biomat., 2022.

Al-Eidani. I.J.M. isolate and identify endophytic fungi from leaves Eucalyptus Camaldulensis and their antifungal activity against fungal pathogens. Kerbala Sci. Univ. J., 2017; 15, 1, 164-170.

Wei, G.; Chen, Z.; Wang, B.; Wei, F.; Zhang, G.; Wang, Y.; Chen, S. Endophytes isolated from Panax notoginseng converted ginsenosides. Microb. Biotechnol., 2021; 14, 4, 1730-1746.

Moreno-Gavíra, A.; Diánez, F.; Sánchez-Montesinos, B.; Santos, M. Paecilomyces variotii as a plant-growth promoter in horticulture. Agronomy, 2020; 10, 4, 597.

Begum, S.R.; Tamilselvi, K.S. Biotechnological application of talaromyces radicus associated with cucumis dipsaceuse hrenb. exspach. Plant Archives, 2019; 19, 1, 1938-1946.

Asaf, S.; Hamayun, M.; Khan, A. L.; Waqas, M.; Khan, M. A.; Jan, R.; Hussain, A. Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol. Biochem., 2018; 128, 13-23.

Ali, B. Z.; Alfayed, A. A. M. Endophytic Fungi from Leaves and Twigs of Albizia lebbeck and Their Antifungal Activity. Ibn Al-Haitham J. Pure Appl. Sci., 2014; 27, 3, 24-33.

Kapoor, N.; Ntemafack, A.; Chouhan, R.; Gandhi, S. G. Anti-phytopathogenic and plant growth promoting potential of endophytic fungi isolated from Dysoxylum gotadhora. Arch. Phytopathol. Pflanzenschutz., 2022; 55, 4, 454-473.

Hussein, H. G.; El-Sayed, E. S. R.; Younis, N. A.; Hamdy, A. E. H. A.; Easa, S. M. Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Express, 2022; 12, 1, 1-16.

Mishra, V. K.; Passari, A. K.; Singh, B. P. In vitro antimycotic and biosynthetic potential of fungal endophytes associated with Schima Wallichii. Curr. Trends Plant Dis. Diagn. Manag. Pract., 2016; 367-381.‏

Abdel-Motaal, F.F.; Nassar, M.S.; El-Zayat, S.A.; El-Sayed, M.A.; Ito, S.I. Antifungal activity of endophytic fungi isolated from Egyptian henbane (Hyoscyamus muticus L.). Pak. J. Bot. 2010; 42, 4, 2883-2894.

Ai, H.L.; Zhang, L.M.; Chen, Y.P.; Zi, S.H.; Xiang, H.; Zhao, D.K.; Shen, Y. Two new compounds from an endophytic fungus Alternaria solani. J. Asian Nat. Prod. Res., 2012; 14, 12, 1144-1148.

Souza-Motta, C.M.D.; Cavalcanti, M. A. D.Q.; Porto, A.L.F.; Moreira, K.A.; Lima Filho, J.L.D. Aspergillus niveus Blochwitz 4128URM: new source for inulinase production. Braz. Arch. Biol. Technol., 2005; 48,343-350.

Sahani, K.; Thakur, D.; Hemalatha, K.P.J.; Ganguly, A. Antiglycemic Activity of Endophytic Fungi from Selected Medicinal Plants by Alpha-Amylase Inhibition Method. Int. J. Sci. Res., 2017; 6, 3, 2203-2206.

Nigam, A.; Jampani, A. Isolation of Fungal Endophytes from Aloe Vera and the Study of Metabolites for Antibacterial Activity and Effect of Growth Hormones on the Plant Growth of Ocimum Sanctum and with Aniasomnifera. Annals of R.S.C.B., 2021; 25, 6, 18318–18327.

Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M. P. Pharmacological update properties of Aloe vera and its major active constituents. Molecules, 2020; 25, 6, 1324.

Borges, S. R.; Hoefel, A.L. Evidências sobre a ação de compostos do Aloe vera em células cancerígenas: uma revisão da literatura. Revista Fitos Eletrônica, 2021.‏

Nowak-Perlak, M.; Bromke, M. A.; Ziółkowski, P.; Woźniak, M. The Comparison of the Efficiency of Emodin and Aloe-Emodin in Photodynamic Therapy. Int. J. Mol. Sci., 2022; 23, 11, 6276.

Zhang, Y.; Zhou, W. E.; Yan, J. Q.; Liu, M.; Zhou, Y.; Shen, X.; ... Li, G. H. A review of the extraction and determination methods of thirteen essential vitamins to the human body: An update from 2010. Molecules, 2018; 23, 6, 1484.

Dong, X.; Zeng, Y.; Liu, Y.; You, L.; Yin, X.; Fu, J.; Ni, J. Aloe‐emodin: a review of its pharmacology, toxicity, and pharmacokinetics. Phytotherapy Res., 2020; 34, 2, 270-281.

Benzidia, B.; Barbouchi, M.; Hammouch, H.; Belahbib, N.; Zouarhi, M.; Erramli, H.; Hajjaji, N. Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. F. J. King Saud Univ. Sci. 2019; 31, 4, 1175-1181.

Ahmad, M.; Nangyal, H.; Sherwani, S. K.; Islam, Z.; Shah, S. H. Effect of heat stress on fatty acids profiles of Aloe vera and Bryophyllum pinnatum leaves. World Appl. Sci. J., 2013; 28, 1592-1596.

Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; ... Liu, L. The review of alpha‐ linolenic acid: Sources, metabolism, and pharmacology. Phytotherapy Res., 2022; 36, 1, 164-188.

Marangoni, F.; Agostoni, C.; Borghi, C.; Catapano, A. L.; Cena, H.; Ghiselli, A.; ... Poli, A. Dietary linoleic acid and human health: Focus on cardiovascular and cardiometabolic effects. Atherosclerosis, 2020; 292, 90-98.

Dachev, M.; Bryndová, J.; Jakubek, M.; Moučka, Z.; Urban, M. The effects of conjugated linoleic acids on cancer. Processes, 2021; 9, 3, 454.

Sales-Campos, H.; Reis de Souza, P.; Crema Peghini, B.; Santana da Silva, J.; Ribeiro Cardoso, C. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem., 2013; 13, 2, 201-210.

Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish Immunol., 2019; 95, 595-605.

Soliman, H. M.; Basuny, A. M.; Arafat, S. M. Utilization of stearic acid extracted from olive pomace for production of triazoles, thiadiazoles and thiadiazines derivatives of potential biological activities. J. Oleo Sci. 2015; 64, 9, 1019-1032.

Segueni, N.; Zellagui, A.; Boulechfar, S.; Derouiche, K.; Rhouati, S. Essential oil of Hertia cheirifolia leaves: chemical composition, antibacterial and antioxidant activities. J. Mater. Environ. Sci. 2017, 8, 2, 551-556.

Mamedbeyli, E. H.; Jafarov, I. A.; Hasanov, V. S.; Ibrahimli, S. I.; Kazimova, T.H. Synthesis and properties of aminomethoxy derivaties of 1-(ethylthio) heptane. Processes Petrochem. Oil Refin., 2011l12, 4, 228-233.

Jasim, F.A.; Al-Hilu, H.S. Chemical Datasets, Antioxidant, Free Radicals Scavenger activities estimate in Aqueous Garlic (Allium sativum) extract. Res. J. Pharm. Technol., 2021; 14, 10, 5157-5162.

Chachaiya, P. K.; Mehta, G. Evaluation of Secondary Metabolites in Wheat Grain (Triticum sp.) Grown in Humid South Eastern Plain Zone of Rajasthan (India). Int. J. Agric. Environ. Biotechnol., 2019; 12, 3, 249-260.

Xie, C. P.; Li, K. F.; Peng, W. X.; Liu, Q. M.; Gao, D.W. TD-GC-MS analysis on volatile organic compounds of chinese fir biomass in simulated hot drying environment. Mater. Sci. Forum, 2012; 704, 337-342.

Jangid, A.K.; Solanki, R.; Patel, S.; Medicherla, K.; Pooja, D.; Kulhari, H. Improving Anticancer Activity of Chrysin using Tumor Microenvironment pH-Responsive and Self Assembled Nanoparticles. ACS omega, 2022; 7, 18, 15919-15928.

Mohamed, S.I.Y. Constituents and antimicrobial potential of oils from some medicinal plants. Doctoral dissertation, College of Postgraduate Studies, Sudan University of Science & Technology: Sudan, 2021; 78.