Synthesis of New Bismaleimide Homopolymer and Copolymers Derived from 4, 4ˉ-Bis[4-(N-maleimidyl) Phenyl Schiff Base] Tolidine

Main Article Content

Mustafa Salah Hasan
Ahlam Marouf Al-Azzawi

Abstract

Polyimides are widely used in high-temperature plastics, adhesives, dielectrics, photoresists, nonlinear optical materials, separation membrane materials, and Langmuir-Blodgett (LB) films. They are commonly regarded as the most heat-resistant polymers. This work involved the synthesis of a new bismaleimide homopolymer and copolymer by performing many steps. The synthesis of compound (1) (bis [4-(amino phenyl) Schiff base] tolidine) via condensation of o-tolidine with two moles of 4-aminoacetophenone. Secondly, compound (1) was combined with maleic anhydride to form compound (2) (4, 4ˉ-bis[4-(N-maleamic acid) phenyl Schiff base] toluidine). Thirdly, a dehydration reaction was carried out affording compound (3) (4,4ˉ-bis [4-(N-maleimidyl) phenyl Schiff base] toluidine). Compound (3) represents the new vinylic monomer, which was successfully introduced in addition to homopolymerization and copolymerization with selected vinylic monomers, affording homopolymer (4) and copolymers (5, 6), respectively. The new homopolymer and copolymers showed good fusibility and solubility in many organic solvents, leading to easy processing and expected to serve a broad spectrum of applications.

Article Details

How to Cite
Synthesis of New Bismaleimide Homopolymer and Copolymers Derived from 4, 4ˉ-Bis[4-(N-maleimidyl) Phenyl Schiff Base] Tolidine. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 298-307. https://doi.org/10.30526/37.1.3264
Section
Chemistry

How to Cite

Synthesis of New Bismaleimide Homopolymer and Copolymers Derived from 4, 4ˉ-Bis[4-(N-maleimidyl) Phenyl Schiff Base] Tolidine. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 298-307. https://doi.org/10.30526/37.1.3264

Publication Dates

References

Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N., Advances in polyimide‐based materials for space applications. Advanced Materials, 2019, 31 (18), 1807738. https://doi.org/10.1002/adma.201807738.

Wilson, D.; Stenzenberger, H.D.; Hergenrother, P.M. Polyimides. Springer Science & Business Media: 2013. https://link.springer.com/book/10.1007/978-94-010-9661-4.

Chen, X.; Yang, J.; Zhao, J. The effect of solvent to the kinetics of imidization of poly (amic acid). Polymer, 2018, 143, 46-51. https://doi.org/10.1016/j.polymer.2018.04.005.

Sezer Hicyilmaz, A.; Celik Bedeloglu, A. Applications of polyimide coatings: A review. SN Applied Sciences, 2021, 3, 1-22. https://link.springer.com/article/10.1007/s42452-021-04362-5.

Fadel, Z. H.; Al-Azzawi, A.M. Design, synthesis and antibacterial activity screening of novel bis cyclic imides linked to trimethoprim drug. Research Journal of Pharmacy and Technology, 2021, 14 (11), 5874-5880. https://doi.org/10.52711/0974-360X.2021.01049.

Mittal, K. L. Polyimides: Synthesis, characterization, and applications. Volume 1. Springer Science & Business Media: 2013, 1. https://link.springer.com/book/10.1007/978-1-4615-7637-2.

Li, Z.; Lin, Z. Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate, 2021, 2 (2), e21. https://doi.org/10.1002/agt2.21.

Walther, P.; Naumann, S. N-Heterocyclic olefin-based (co) polymerization of a challenging monomer: Homopolymerization of ω-pentadecalactone and its copolymers with γ-butyrolactone, δ-valerolactone, and ε-caprolactone. Macromolecules, 2017, 50 (21), 8406-8416. https://doi.org/10.1021/acs.macromol.7b01678.

Wang, J.; Zhang, D.; Chu, F. Wood‐derived functional polymeric materials. Advanced Materials, 2021, 33 (28), 2001135. https://doi.org/10.1002/adma.202001135.

Hoque, M.; Alam, M.; Wang, S.; Zaman, J.U.; Rahman, M.S.; Johir, M.; Tian, L.; Choi, J.-G.; Ahmed, M. B.; Yoon, M.-H. Interaction chemistry of functional groups for natural biopolymer-based hydrogel design. Materials Science and Engineering: R: Reports, 2023, 156, 100758. http://dx.doi.org/10.1016/j.mser.2023.100758.

Mutlu, H.; Ceper, E. B.; Li, X.; Yang, J.; Dong, W.; Ozmen, M. M.; Theato, P. Sulfur chemistry in polymer and materials science. Macromolecular rapid communications, 2019, 40 (1), 1800650. https://doi.org/10.1002/marc.201800650.

Chen, H.; Guo, J.; Wang, Y.; Dong, W.; Zhao, Y.; Sun, L. Bio‐inspired imprinting materials for biomedical applications. Advanced Science, 2022, 9 (28), 2202038. https://doi.org/10.1002/advs.202202038.

Al-Azzawi, A. M.; Huseeni, M.D. Design and synthesis of novel homo and copolymerization based on 4-(N-maleimidylmethylbenzylidene)-4'-(N-citraconamic acid)-1, 1'-biphenyl. Egyptian Journal of Chemistry, 2022, 65 (1), 159-166. https://doi.org/10.21608/ejchem.2021.78334.3888.

Yassen, T.M.; AL-Azzawi, A.M. Synthesis and characterization of new bis-schiff bases linked to various imide cycles. Iraqi Journal of Science, 2023, 1062-1070. https://doi.org/10.24996/ijs.2023.64.3.3.

Al-Azzawi, A. M.; Al-Razzak, M. Synthesis, characterization and antimicrobial screening of new Schiff bases linked to phthalimidyl phenyl sulfonate moiety. Baghdad Sci J., 2014, 11, 438-46. https://doi.org/10.21123/bsj.2014.11.2.438-446.

Lee, C. W.; Masutani, K.; Kimura, Y. Ring-opening polymerization of a macrocyclic lactone monomer isolated from oligomeric byproducts of poly (butylene succinate)(PBS): An efficient route to high-molecular-weight PBS and block copolymers of PBS. Polymer, 2014, 55 (22), 5673-5679. http://dx.doi.org/10.1016/j.polymer.2014.08.028.

Al-Azzawi, A.M.; Yaseen, H. Synthesis and curing of new phenolic resins containing pendant tetrachlorophthalimides. Iraqi Journal of Science, 2016, 57(2B), 1345-1356. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/7099.

Chen, W.-Y.; Huang, Z.-H.; Liu, X.-L.; Liu, Y.-J.; Zhao, J.-W.; Sheng, S.-R. New fluorinated polyimides based on 1, 2-bis (4-aminophenyl)-4, 5-bis (4-trifluoromethylphenyl)-1H-imidazole. High Performance Polymers, 2022, 34 (4), 487-498. https://doi.org/10.1177/09540083221074611.

Al-Tamimi, E. O.; Al-Mouamin, T.M. Synthesis and characterization of new polyimide contain Heterocyclic. Baghdad Science Journal, 2013, 10, 4. https://doi.org/10.21123/bsj.2013.10.4.1203-1210.

Wang, C.; Zhao, X.; Tian, D.; Wang, D.; Chen, C.; Zhou, H. Synthesis and characterization of novel polyimides derived from 4, 4’-bis (5-amino-2-pyridinoxy) benzophenone: effect of pyridine and ketone units in the main. Designed Monomers and Polymers, 2017, 20 (1), 97-105. https://doi: 10.1080/15685551.2016.1231036.

Pfeifer, S.; Lutz, J.F. Development of a library of N‐substituted maleimides for the local functionalization of linear polymer chains. Chemistry–A European Journal, 2008, 14 (35), 10949-10957.

Chan‐Seng, D.; Zamfir, M.; Lutz, J.F. Polymer‐chain encoding: Synthesis of highly complex monomer sequence patterns by using automated protocols. Angewandte Chemie, 2012, 124 (49), 12420-12423. http://dx.doi.org/10.1002/anie.201206371.

Hassen, H.S.; Majeed, N.S.; Mohsein, H.F.; Hassan, E.S. Synthesis and characterization of monomer and three types of polymers containing chalcone groups in main chain. Egyptian Journal of Chemistry, 2020, 63 (11), 4195-4203. https://doi.org/10.21608/ejchem.2020.21287.2276.

Zimmerer, C.; Nagel, J.; Steiner, G.; Heinrich, G. Nondestructive molecular characterization of polycarbonate–polyvinylamine composites after thermally induced aminolysis. Macromolecular Materials and Engineering, 2016, 301 (6), 648-652. http://dx.doi.org/10.1002/mame.201500419.

Younis, S. K. Synthesis of some New 1, 2, 4, 5-Tetrazine Derivatives Via Diels-Alder Reaction. Rafidain Journal of Science, 2010, 21 (2), 65-76. https://doi.org/10.33899/rjs.2010.38352.

Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Glycosylation of Methoxylated Flavonoids in the Cultures of Isaria fumosorosea KCH J2. Molecules, 2018, 23 (10), 2578. https://doi.org/10.3390/molecules23102578.

Li, X.; Zhang, C.; Cai, S.; Lei, X.; Altoe, V.; Hong, F.; Urban, J. J.; Ciston, J.; Chan, E. M.; Liu, Y. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nature communications, 2018, 9 (1), 2998. https://doi.org/10.1038/s41467-018-05462-4.

Faujdar, E.; Singh, R. K. Comparative study of poly (acrylate-co-maleimide) copolymers and poly (α-olefins-co-maleimide) copolymers of hindered phenolic Schiff base amine for lubricant applications. Journal of Polymer Research, 2022, 29 (3), 96. http://dx.doi.org/10.1007/s10965-022-02935-5.

Chalyavi, F.; Adeyiga, O.; Weiner, J. M.; Monzy, J.N.; Schmitz, A.J.; Nguyen, J.K.; Fenlon, E. E.; Brewer, S.H.; Odoh, S.O.; Tucker, M.J. 2D-IR studies of cyanamides (NCN) as spectroscopic reporters of dynamics in biomolecules: Uncovering the origin of mysterious peaks. The Journal of Chemical Physics, 2020, 152 (7). https://doi: 10.1063/1.5138654.

Aguilar-Hernández, G.; Zepeda-Vallejo, L.G.; García-Magaña, M.D.L.; Vivar-Vera, M.D.l.Á.; Pérez-Larios, A.; Girón-Pérez, M. I.; Coria-Tellez, A. V.; Rodríguez-Aguayo, C.; Montalvo-González, E. Extraction of alkaloids using ultrasound from pulp and by-products of soursop fruit (Annona muricata L.). Applied Sciences, 2020, 10 (14), 4869. https://doi.org/10.3390/app10144869.

Al-Azzawi, A. M.; Sulaiman, A. Synthesis, characterization and evaluation of antibacterial activity of several new 1, 8-naphthalimides containing benzothiazole moiety. Karbala J. Pharm. Sci., 2011,2, 111-123. https://www.iasj.net/iasj/download/9ec8a1ce52a34aad.