Electropolymerization of Limonene and Its Nanocomposites with ZnO and TiO2 to Protect Stainless Steel 304L Alloy from Corrosion in 3.5% NaCl Solution

Main Article Content

Ayat Monther Alqudsi
khulood Abid Saleh

Abstract

        The surface disintegration of metals and alloys in a particular surrounding environment is known as corrosion, in addition to its chemical qualities, corrosion processes change the physical and mechanical properties of a metal alloy. A new approach based on a unique material has been employed to prevent rusting. Conducting polymer-composites are material types that show promise for anticorrosion by electrochemical synthesis of polylimonene/metals oxide nanocomposite (ZnO,TiO2) on Stainless Steel 304L, which plays as the working electrode by using the electropolymerization technique. The synthesized coating polymer was characterized by Fourier transform-infrared spectroscopy and atomic force microscopy checkups. The findings demonstrated that, when compared to the blank SS304L, PL/nanocomposite and PL provide the strongest corrosion defenses for the metal. The results explained that the corrosion protection increased from 52% for PL film to 89% for PL/ZnO film and to 97% for PL/TiO2 at 298K. In addition, calculations were made for the kinetic and thermodynamic parameters (Ea, A, ∆H, and ∆S). Escherichia coli and Staphylococcus aureus, two gram-positive and gram-negative bacteria, were used to test the biological activity of polymeric film (E.Coli).

Article Details

How to Cite
[1]
Alqudsi , A.M. and Saleh , khulood A. 2024. Electropolymerization of Limonene and Its Nanocomposites with ZnO and TiO2 to Protect Stainless Steel 304L Alloy from Corrosion in 3.5% NaCl Solution. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 203–215. DOI:https://doi.org/10.30526/37.3.3267.
Section
Chemistry

How to Cite

[1]
Alqudsi , A.M. and Saleh , khulood A. 2024. Electropolymerization of Limonene and Its Nanocomposites with ZnO and TiO2 to Protect Stainless Steel 304L Alloy from Corrosion in 3.5% NaCl Solution. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 203–215. DOI:https://doi.org/10.30526/37.3.3267.

Publication Dates

Received

2023-02-03

Accepted

2023-05-08

Published Online First

2024-07-20

References

Zhan, C.; Yu, G.; Lu, Y.; Wang, L.; Wujcik, E.; Wei, S. Conductive Polymer Nanocomposites: A Critical Review of Modern Advanced Devices. Journal of Materials Chemistry 2017, 5(7), 1569-1585. https://doi.org/10.1039/C6TC04269D.

Contal, E.; Lakard, S.; Dumur, F.; Lakard, B. Investigation of Polycarbazoles Thin Films Prepared by Electrochemical Oxidation of 3-and 9-Substituted Carbazoles. Progress in OrganicCoatings 2022,162,106563. https://doi.org/10.1016/j.porgcoat.2021.106563.

Habeeb, S. A.; Saleh, K. A. Electrochemical Polymerization and Biological Activity of 4-(Nicotinamido)-4-Oxo-2-Butenoic Acid as an Anticorrosion Coating on A 316L Stainless Steel Surface. Iraqi Journal of Science 2021, 3(62), 729-741. https://doi.org/10.24996/ijs.2021.62.3.3.

Hossen, A.; Mahmud, R.; Islam, A. Minimization of Corrosion in Aquatic Environment–A Review. Int J Hydro 2023, 7(1), 9-16. https://doi.org/10.15406/ijh.2023.07.00334.

Decher, G.; Hong, J. D.; Schmitt, J. Buildup of Ultrathin Multilayer Films by a Self-Assembly Process: III. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces. Thin solid films 1992, 210, 831-835. https://doi.org/10.1016/0040-6090(92)90417-A.

Holder, E.; Tessler, N.; Rogach, A.L. Hybrid Nanocomposite Materials with Organic And Inorganic Components for Opto-Electronic Devices. Journal of Materials Chemistry 2008, 18(10), 1064-1078. https://doi.org/10.1039/B712176H.

Steitz, R.; Jaeger, W.; Klitzing, R.V. Influence of Charge Density and Ionic Strength on the Multilayer Formation of Strong Polyelectrolytes. Langmuir 2001, 17(15), 4471-4474. https://doi.org/10.1021/la010168d.

Guo, Y.; Geng, W.; Sun, J. Layer-by-Layer Deposition of Polyelectrolyte−Polyelectrolyte Complexes for Multilayer Film Fabrication. Langmuir 2009, 25(2), 1004-1010. https://doi.org/10.1021/la803479a.

Elzbieciak, M.; Zapotoczny, S.; Nowak, P.; Krastev, R.; Nowakowska, M.; Warszynski, P. Influence of Ph on The Structure of Multilayer Films Composed of Strong and Weak Polyelectrolytes. Langmuir 2009, 25(5), 3255-3259. https://doi.org/10.1021/la803988k

Ali, M. I.; Saleh, K. A. Corrosion protection studies of stainless steel alloy in hydrochloric acid by using electropolymerized poly (N-imidazolyl tetrahydrophthalamic acid). International Journal of Engineering & Technology 2018, 7(4), 5821-5828. https://doi,org/10.24996/ijs.2020.61.10.3

Wijayanti, W.; Sasongko, M.N. The Role of Limonene in The Branching of Straight Chains in Low-Octane Hydrocarbons. Renewable Energy 2023, 204, 421-431. https://doi.org/10.1016/j.renene.2023.01.008

Masood, A.; Ahmed, N.; Razip Wee, M.M.; Patra, A.; Mahmoudi, E.; Siow, K.S. Atmospheric Pressure Plasma Polymerisation of D-Limonene and Its Antimicrobial Activity. Polymers 2023, 15(2), 307. https://doi.org/10.3390/polym15020307.

Al-Mashhadani, H.A.; Saleh, K.A. Electro-Polymerization of Poly Eugenol on Ti and Ti Alloy Dental Implant Treatment by Micro arc Oxidation Using as Anti-Corrosion and Anti-Microbial. Research Journal of Pharmacy and Technology 2020, 13(10), 4687-4696.‏ https://doi.org/10.5958/0974-360X.2020.00825.2.

De Oliveira, E.R.M.; Vieira, R.P. Synthesis and Characterization of Poly (Limonene) by Photoinduced Controlled Radical Polymerization. Journal of Polymers and the Environment 2020, 28, 2931-2938. httpa://doi,org/10.1007/s10924-020-01823-7.

Stößer, T.; Li, C.; Unruangsri, J.; Saini, P. K.; Sablong, R. J.; Meier, M. A.; Koning, C. Bio-Derived Polymers for Coating Applications: Comparing Poly (Limonene Carbonate) and Poly (Cyclohexadiene Carbonate). Polymer Chemistry 2017, 8(39), 6099-6105.DOI https://doi.org/10.1039/C7PY01223C.

Raza, S.; Zhang, J.; Ali, I.; Li, X.; Liu, C. Recent trends in the development of biomass-based polymers from renewable resources and their environmental applications. Journal of the Taiwan Institute of Chemical Engineers 2020, 115, 293-303. https://doi.org/10.1016/j.jtice.2020.10.013.

Al-Mashhadani, H. A.; Saleh, K. A. Electro-polymerization of poly Eugenol on Ti and Ti alloy dental implant treatment by micro arc oxidation using as Anti-corrosion and Anti-microbial. Res. J. Pharm. Technol 2020, 13(10), 4687-4696.‏ https://doi.org/10.5958/0974-360X.2020.00825.2.

Liu, Y.; Guo, X.; Liu, D.; Wang, Y.; Hao, L.; Jin, Y; Wu, Y. C. Inhibition Effect of Sparteine Isomers With Different Stereochemical Conformations on the Corrosion of Mild Steel In Hydrochloric Acid Solution. Journal of Molecular Liquids 2022, 345, 117833. https://doi.org/10.1016/j.molliq.2021.117833

Lorenzetti, M.; Pellicer, E.; Sort, J.; Baró, M. D.; Kovač, J.; Novak, S.; Kobe, S. Improvement to the Corrosion Resistance of Ti-Based Implants Using Hydrothermally Synthesized Nanostructured Anatase Coatings. Materials 2014, 7(1), 180 194. https://doi.org/10.3390/ma7010180.

Li, Z.; Yuan, X.; Sun, M.; Li, Z.; Zhang, D.; Lei, Y; Wang, F. Rhamnolipid as An Eco-Friendly Corrosion Inhibitor for Microbiologically Influenced Corrosion. Corrosion Science 2022, 204, 110390. https://doi.org/10.1016/j.corsci.2022.110390.

Kassou, O.; Galai, M.; Ballakhmima, R. A.; Dkhireche, N.; Rochdi, A.; Ebn Touhami, M.; Zarrouk, A. Comparative study of low carbon steel corrosion inhibition in 200 ppm NaCl by amino acid compounds. J. Mater. Environ. Sci 2015, 6(4), 1147-1155. https://www.researchgate.net/publication/274639114.

Kubba, R. M.; Mohammed, M. A.; Ahamed, L. S. DFT Calculations and Experimental Study to Inhibit Carbon Steel Corrosion in Saline Solution by Quinoline-2-One Derivative: Carbon Steel Corrosion. Baghdad Science Journal 2021, 18(1), 0113-0113. http://dx.doi.org/10.21123/bsj.2020.18.1.0113.

Oliveira, M.; Moraes, J.; Faez, R. Impedance Studies of Poly (Methylmethacrylate-Co-Acrylic Acid) Doped Polyaniline Films on Aluminum Alloy. Progress in Organic Coatings 2009, 65(3), 348-356. https://doi.org/10.1016/j.porgcoat.2009.02.003

Qin, W. Corrosion mechanisms of copper and gold ball bonds. In ISTFA ASM International 2022, 318-322. https://doi.org/10.1149/1.3567681

Joseph, B.; John, S.; Joseph, A.; Narayana, B. Imidazolidine-2-Thione as Corrosion Inhibitor For Mild Steel in Hydrochloric Acid. 2010, 17, 366-274. https://nopr.niscpr.res.in/bitstream/123456789/10452/1/IJCT%2017(5)%20366-374.pdf.

Abdallah, M. Rhodanine Azosulpha Drugs as Corrosion Inhibitors for Corrosion of 304 Stainless Steel in Hydrochloric Acid Solution. Corrosion science 2022, 44(4), 717-728. https://doi.org/10.1016/S0010-938X(01)00100-7.

Noor, E. ;Al-Moubaraki, A. H. Thermodynamic Study of Metal Corrosion and Inhibitor Adsorption Processes in Mild Steel/1-Methyl-4 [4′(-X)-Styryl Pyridinium Iodides/ Hydrochloric Acid Systems. Materials Chemistry and Physics 2008, 110(1), 145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028.

Li, Y.; Feng,T.; Wang, Y. The Role of Bacterial Signaling Networks in Antibiotics Response and Resistance Regulation.Marine Life Science & Technology 2022, 4(2), 163-178. ‏https://doi.org/10.1007/s42995-022-00126-1.

Abd El Rehim, S.S.; Hassan, H.H.; Amin, M.A. Corrosion inhibition of Aluminum by 1, 1 (lauryl amido) Propyl Ammonium Chloride in HCl Solution. Materials chemistry and physics 2001, 70(1), 64-72. https://doi.org/10.1016/S0254-0584(00)00468-5

Saleh, K.A.; Ali, M.I. Electro polymerization for (N-Terminal tetrahydrophthalamic acid) for Anti-corrosion and Biological Activity Applications. Iraqi Journal of Science 2020, 61(1), 1-12. https://doi.org/10.24996/ijs.2020.61.1.1

Mohammed, R.A.; Saleh, K.A. Conducting Poly [N-(4-Methoxy Phenyl) Maleamic Acid]/Metals Oxides Nanocomposites for Corrosion Protection And Bioactivity Applications. Chem. Methodol 2022, 6(1), 74-82. https://doi.org/10.22034/chemm.2022.1.8

Mohammed, R.A.; Saleh, K.A. Electropolymerization of [N-(1, 3-thiazo-2-yl)] maleamic acid and their Nanocomposite with Graphene Oxide as Protective Coating against Corrosion and Antibacterial Action. Iraqi Journal of Science 2022, 63(10), 4163-4174. https://doi.org/10.24996/ijs.2022.63.10.3.