Study the Quality of IMRT and VMAT Treatment Planning Techniques (TPS) Using Indices of Achievement (IOA) Nasopharyngeal Cancer Plans

Main Article Content

Ayat Methaq Khalaf
Basim Khalaf Rejah

Abstract

Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiation Therapy (IMRT) are comparable for nasopharyngeal cancerous radiation therapy. This research intends to analyze the high-quality plan using accomplishment, conformance, and homogeneity criteria.


The study involved 40 patients with a postnasal cancerous tumor. The patients underwent computed tomography (CT) simulation to scan the anatomical details of the patients' heads. Then, their data was forwarded to the treatment planning system (TPS) workstation for IMRT and VMAT planning. The plans were evaluated using the IOA, HI, and CI indices.


The nasopharynx coverage results consist of the GTV and PTV at 95%. The statistical study reveals that VMAT provides much more coverage than IMRT for 95% GTV and 95% PTV. The results reveal that VMAT has a substantially better-quality plan (IOA) than IMRT. IMRT provides a superior CI, but VMAT protects the cochlea and optic nerves more effectively. In addition, the IMRT is advantageous for the preservation of additional OARs. There is no statistical difference in protection for the mandible and parotid glands between the two procedures. The VMAT has superior coverage for the gross and planned target volumes and achievement indices. The conformity of IMRT in the tumor target area is better, while VMAT can better protect the cochlea and optic nerves.

Article Details

How to Cite
[1]
Khalaf, A.M. and Basim Khalaf Rejah 2024. Study the Quality of IMRT and VMAT Treatment Planning Techniques (TPS) Using Indices of Achievement (IOA) Nasopharyngeal Cancer Plans. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 1 (Jan. 2024), 128–139. DOI:https://doi.org/10.30526/37.1.3277.
Section
Physics

Publication Dates

References

Murshed, H.; Fundamentals of Radiation Oncology: Physical, Biological, and Clinical Aspects. 3rd ed. Academic Press. 2019, 23,15-21

Madlool, S. A.; Abdullah, S. S.; Alabedi, H. H.; Alazawy, N.; Al-Musawi, M. J.; Saad, D.; Optimum Treatment Planning Technique Evaluation for Synchronous Bilateral Breast Cancer with Left Side Supraclavicular Lymph Nodes. Iranian Journal of Medical Physics. 2020,9, 45-56.

Khan, F. M.; Gibbons, J. P.; Khan's the Physics of Radiation Therapy. 6th ed., Lippincott Williams & Wilkins; 2019, 45, 1–5

Faraj, M. K.; Naji N.A.; Alazawy, N. M.; The Efficiency of the Prescribed Dose of the Gamma Knife for the Treatment of Trigeminal Neuralgia. Interdiscip Neurosurg. 2018,14, 9–13. DOI: https://doi.org/10.1016/j.inat.2018.05.017

Pazdur, R.; Wagman, L. D.; Camphausen, K. A.; Hoskins, W. J.; Cancer Management-A Multidisciplinary Approach. 1st ed. New York: The Oncology Group; 2003,23,10-18.

Hasan, M. R.; Kadam. S. M.; Essa, S. I.; Diffuse Thyroid Uptake in FDG PET/ CT scan Can Predict Subclinical Thyroid Disorders. Iraqi Journal of Science. 2022,63, 2000–2005.

Chengqiang, L.; Cheng, T.;Tong, B.; Zhenjiang, L.; Ying, T.; Jian, Z.; Yong, Y.; Jie, L.; Beam Complexity and Monitor Unit Efficiency Comparison in Two Different Volumetric Modulated ARC Therapy Delivery Systems Using Automated Planning, BMC Cancer 2021, 21,257-261.

Jubbier, O. N.; Abdullah, S. S.; Alabedi, H. H.; Alazawy, N. M.; Al-Musawi, M. J.; The Effect of Modulation Complexity Score (MCS) on the IMRT Treatment Planning Delivery Accuracy. Journal of Physics, 2021, 45, 1742-1829

Sami, S.; Hameed, B. S.; Alazawy, N. M.; Al-Musawi, M. J.; Measurements of Electron Beam Dose Distributions in Perspex Block for Different Field Size. J Phys Conf Ser. 2021, 40, 1829-1839.

Sabbar, A. R.; Abdullah, S. S, Alabedi H H, Alazawy NM, Al-Musawi MJ. Electron Beam Profile Assessment of Linear Accelerator Using Startrack Quality Assurance Device. Journal Physics Conference Series. 2021,1,12015-12023.

Shyh-An, Y.; Tzer-Zen, H.; Chih-Chun, W.; Chuen-Chien, Y.; Ching-Feng, L.; Chien-Chung, W.; Tun-Yen Hsu, Ruey-Feng Hsu, Yu-Chen Shih, Yaw-Chang Huang, Meng-Che Hsieh, Jhy-Shyan Gau, Liyun Chang, and Tsair-Fwu Lee. Outcomes of Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiotherapy, Journal of Radiation Resereach. 2021,62 ,438–447.

Ning, Z. H.; Mu, J.M.; Jin, J,X.; Li, X.D.; Li, Q.L.; Gu WD, Single ARC Volumetric-Modulated ARC Therapy is Sufficient for Nasopharyngeal Carcinoma: A Dosimetric Comparison with Dual ARC VMAT and Dynamic MLC and Step-and-Shoot Intensity-Modulated Radiotherapy. Radiation Oncology. 2013,8,14- 23 DOI: https://doi.org/10.1186/1748-717X-8-237

Lee, A.; Tung, S.Y.; Ngan, R. K.; Chappell, R.; Chua, DTT, Lu TX. Factors Contributing to the Efficacy of Concurrent-Adjuvant Chemotherapy for Loco Regionally Advanced Nasopharyngeal Carcinoma: Combined Analyses of NPC-9901 and NPC-9902 Trials 002, National Center for Biotechnology Information. 2011,47,5,656–666. DOI: https://doi.org/10.1016/j.ejca.2010.10.026

Muryoush, A.Q., The Effect of Cold Plasma on pH, Creatine, and the Concentration of the Most Trace Elements in Human's Nails by Using X-ray Fluorescent Method. Iraqi Journal of Science. 2022, 63 ,5, 2057–2062.

Sherif , A.; AbdElWahab, Doaa, A.; Mohammed, A. M.; Gaballah, M. M.; Three-Dimensional Conformal versus Intensity Modulated Radiation Therapy in Treatment of Nasopharyngeal Carcinoma, The Egyptian Journal of Hospital Medicine, 2018,7 ,3492-3499.

Rzaij, J. M.; Nawaf, S. O.; Khalaf, A.; A Study on the Scattering and Absorption Efficiencies of Si-Ag Coaxial Nanowire. Iraqi Journal of Science. 2019,60,9, 2003–2008.

Taheri, K. Z.; Björk-Eriksson, T.; Nill, S.; Wilkens, J.J.; Oelfke U, Johansson KA. Intensity-Modulated Radiotherapy of Nasopharyngeal Carcinoma: A Comparative Treatment Planning Study of Photons and Protons. Radiation Oncology. 2008,3,1,1–15. DOI: https://doi.org/10.1186/1748-717X-3-4

Sasidharan, S. L.; Martin, L.; Ming, H. L.; Jamie, M.; Junli, Shi, Sidney Yu, Do Kun Yoon, Shih Kien Djeng, Jiguang Wang, Chwee Ming Lim and Min Han Tan. Patient-Derived Nasopharyngeal Cancer Organoids for Disease Modeling and Radiation Dose Optimization, Frontiers in Oncology, 2021,11,62,234-239.

Palma, D.A.; Verbakel, W.; Otto, K.; Senan, S.; New Developments in ARC Radiation Therapy: A Review. Cancer Treatment Reviews. 2010,36,5,393–399. DOI: https://doi.org/10.1016/j.ctrv.2010.01.004

Krishna, K.; Amit, V.; Bilikere, S.; Dwarakanath, Rao VL Papineni. Technological Advancements in External Beam Radiation Therapy (EBRT): An Indispensable Tool for Cancer Treatment, Cancer Management and Research, 2022,14, 1421–1429.

Leech, M.; Coffey, M.; Mast, M.; Moura, F.;Osztavics, A.; Pasini, D. Estro Acrop Guidelines for Positioning, Immobilization and Position Verification of Head and Neck Patients for Radiation Therapists. National Center for Biotechnology Information. 2017,1, 1–7. DOI: https://doi.org/10.1016/j.tipsro.2016.12.001

Abbas, W. A.; Genetic Algorithm-Based Anisotropic Diffusion Filter and Clustering Algorithms for Thyroid Tumor Detection. Iraqi Journal of Science. 2020,61(5),1016–26.

Leech, M.; Coffey, M.; Mast, M.; Moura, F.; Osztavics, A.; Pasini D, Guidelines for Positioning, Immobilization and Position Verification of Head and Neck Patients for Rtts for Sharing Vignettes of Their Current Practice. National Center for Biotechnology Information 2016,12, 34-44

Bakir, H.; Abdul Wahid, T.A.; Amran AS, al Zurfi AH. Determination of Radiation Dose from Routine X-ray Examination at Three Selected Hospitals in Alnajaf, Iraq. Iraqi Journal of Science. 2019,60(10),2163–2167.

Park, Y.K.; Park, S.; Wu, HG, Kim S. A New Plan Quality Index for Dose Painting Radiotherapy. Journal Applied Clinincl Medical Physics. 2014,15(4),316–25. DOI: https://doi.org/10.1120/jacmp.v15i4.4941

Basma, S.; Basim, K. R.; Haydar, H. A.; Quality Assurance of LINAC by Analyzing the Profile of 6-MV and 10-MV Photon Beams Using Star Track Device, Iranian Journal of Medical Physics.2020,17(4),260-265.

Xiao, Y.; Papiez, L.; Paulus, R.; Timmerman R, Straube WL, Bosch WR. Dosimetric Evaluation of Heterogeneity Corrections for RTOG 0236: Stereotactic Body Radiotherapy of Inoperable Stage I-II Non-Small-Cell Lung Cancer, National Center for Biotechnology Information. 2009,73(4),1235–42. DOI: https://doi.org/10.1016/j.ijrobp.2008.11.019

Halperin, E.; Wazer, D.E.; Perez, C.; Brady LW. Perez and Brady's Principles and Practice of Radiation Oncology. 7th ed. Lippincott Williams & Wilkins. 2019,72,233-245

Li, J.; Galvin, J.; Harrison, A.; Timmerman, R, Yu Y, Xiao Y. Dosimetric Verification Using Monte Carlo Calculations for Tissue Heterogeneity-Corrected Conformal Treatment Plans Following RTOG 0813 Dosimetric Criteria for Lung Cancer Stereotactic Body Radiotherapy. National Center for Biotechnology Information. 2012,84(2),508–513. DOI: https://doi.org/10.1016/j.ijrobp.2011.12.005

Moradi, S.; Hashemi, B.; shandeh, M.B.; Banaei, A, Mofid B. Introducing new plan evaluation indices for prostate dose painting IMRT plans based on apparent diffusion coefficient images .Journal Radiation Oncology .2022 ,17(1),193-709

Verbakel, W.; Cuijpers, J.P.; Hoffmans, D.; Bieker, M, Slotman BJ, Senan S. Volumetric Intensity-Modulated Arc Therapy Vs. Conventional IMRT in Head-and-Neck Cancer: A Comparative Planning and Dosimetric Study. Journal National Center for Biotechnology Information. 2009,74(1),252–259. DOI: https://doi.org/10.1016/j.ijrobp.2008.12.033

Chen, B. B.; Huang, S.M.; Xiao, W.W.; Sun WZ, Liu MZ, Lu TX. Prospective Matched Study on Comparison of Volumetric-Modulated ARC Therapy and Intensity Modulated Radiotherapy for Nasopharyngeal Carcinoma: Dosimetry, delivery efficiency and outcomes. Journal National Center for Biotechnology Information. 2018,9(6),978–986. DOI: https://doi.org/10.7150/jca.22843

Adkison, J. B.; Khuntia, D.; Bentzen, S. M.; Cannon, G.M.; Tome WA, Jaradat H. Dose Escalated, Hypo Fractionated Radiotherapy Using Helical Tomotherapy for Inoperable Non-Small Cell Lung Cancer: Preliminary Results of a Risk-Stratified Phase I Dose Escalation Study. Journal Technol Cancer Res Treat. 2008,7(6),441–447. DOI: https://doi.org/10.1177/153303460800700605

Warkentin, B.; Stavrev, P.; Stavreva N, Field C, Fallone BG. A TCP-NTCP Estimation Module Using DVHs and Known Radiobiological Models and Parameter Sets. Journal Applied Clinincal Medical Physics. 2004,5(1),50–63. DOI: https://doi.org/10.1120/jacmp.26.149

Deasy, J.O.; Chao, K.S.; Markman, J.; Uncertainties in Model-Based Outcome Predictions for Treatment Planning. Journal National Center for Biotechnology Information. 2001, 51(5),1389–99. DOI: https://doi.org/10.1016/S0360-3016(01)02659-1

Otto, K.; Volumetric Modulated ARC Therapy: IMRT in a Single Gantry ARC. Medical Physics. 2008,35(1),310–317. DOI: https://doi.org/10.1118/1.2818738

Jiang, L.; Xiong, X.P.; Hu, C.S.; Ou, Z.L.; Zhu, G.P.; Ying, H.M.; In Vitro and in Vivo Studies on Radiobiological Effects of Prolonged Fraction Delivery Time in A549 Cells. Journal National Center for Biotechnology Information. 2013, 54(2), 230–234. DOI: https://doi.org/10.1093/jrr/rrs093

Zhang, W.Z.; Zhai, T.T.; Lu, J.Y.; Chen, J.Z.; Chen, ZJ, Li DR, et al. Volumetric Modulated ARC Therapy vs. c-IMRT for the Treatment of Upper Thoracic Esophageal Cancer. PLoS One. 2015,10(3),1–11 DOI: https://doi.org/10.1371/journal.pone.0121385

Johnston, M.; Clifford, S.; Bromley, R.; Back, M.; Oliver, L.; Eade, T. Volumetric-Modulated ARC Therapy in Head and Neck Radiotherapy: A Planning Comparison Using Simultaneous Integrated Boost for Nasopharynx and Oropharynx Carcinoma. Journal National Center for Biotechnology Information.2011,23(8),503–511 DOI: https://doi.org/10.1016/j.clon.2011.02.002

Vanetti, E.; Clivio, A.; Nicolini, G.; Fogliata, A.; Ghosh-Laskar, S.; Agarwal, J.P.; Volumetric Modulated ARC Radiotherapy for Carcinomas of the Oro-Pharynx, Hypo-Pharynx and Larynx: A Treatment Planning Comparison with Fixed Field IMRT. Journal National Center for Biotechnology Information. 2009, 92(1),111–117. DOI: https://doi.org/10.1016/j.radonc.2008.12.008

Walaa, A. A.; Maha, E. I.; Manar, E.; Wessam, A.; Abass, I. H.; Abdullah, B. I.; Awad, Nageh K. Allam. Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury. Journal Materials Perspective. 2020,12(6),64.