Bayesian Estimation of The unknown parameter of Inverse Rayleigh Distribution (IRD) based on GELF
Main Article Content
Abstract
In this paper, we investigated the Bayesian estimation of the unknown parameter of the Inverse Rayleigh Distribution (IRD) under different priors, represented by the inverse gamma distribution, the inverse chi-squared distribution, and the standard Levy distribution as priors. We obtained the posterior distributions for the unknown parameter of IRD under the different priors based on the general entropy loss function (GELF). We assumed different values for the shape parameter of GELF. Also, the maximum likelihood estimator (MLE) is used to estimate the scale parameter of IRD. Then, a study is conducted to obtain the results, based on the different parameters of Inverse Rayleigh distribution and sample sizes. We found that Bayes estimators perform better than MLE according to the least mean square error (MSE) Criterion
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Soliman, A.; Essam, A. A.; Alaa, A.A. Estimation and prediction from inverse Rayleigh distribution based on lower record values. Applied Mathematical Sciences. 2010, 4(62), 3057 - 3066.
Dey, S. Bayesian estimation of the parameter and reliability function of an inverse Rayleigh Distribution. Malaysian Journal of Mathematical Sciences. 2012, 6(1), 113-124.
Shawky, A.I.; Badr, M.M. Estimations and prediction from the inverse Rayleigh model based on lower record statistics. Life Science Journal. 2012, 9(1),985-990.(ISSN:1097-8135). http://www.lifesciencesite.com.142.
Sindhu, T.N.; Aslam, M.; Feroze, N. Bayes estimation of the parameters of the inverse Rayleigh distribution for left censored data. Prob. Stat. Forum. 2013, 6, 42-59. (ISSN 0974-3235), www.probstat.org.in.
Khan, M.S. Modified inverse Rayleigh distribution. International Journal of Computer Applications (0975 – 8887), 2014, 87(13),28-33. doi: https://doi.org/10.17713/ajs.v44i3.21.
Fan, G. Bayes estimation for inverse Rayleigh model under different loss functions. Research Journal of Applied Sciences, Engineering and Technology 2015, 9(12), 1115-1118. doi: https://doi.org/10.19026/rjaset.9.2605.
Malik,A.S.; Ahmad, S.P. A new inverse Rayleigh distribution: properties and application. International Journal of Scientific Research in Mathematical and Statistical Sciences 2018,5(5),92-96. doi: https://doi.org/10.26438/ijsrmss/v5i5.9296.
Pandey, T. N.; Sanat, P. Minimum risk estimation of scale parameter of inverse Rayleigh distribution under asymmetric loss function. Journal of Computer and Mathematical Sciences 2019, 10(12),1665-1672.
Mudasir, S.; Ahmad, S.P.; Rehman, S. A. A comparative study for weighted Rayleigh distribution. Journal of Reliability and Statistical Studies 2021,14(1), 243–262.doi: https://doi.org/10.13052/jrss0974-8024.14112.
Mohsin, M.; Shahbaz, M.Q. Comparison of Negative Moment Estimator with Maximum Likelihood Estimator of Inverse Rayleigh Distribution. PJSOR. 2005, 1(1),45-48.doi: https://doi.org/10.18187/pjsor.v1i1.115.
Robert,CP.The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementation. 2nd paperback ed., New York: Springer 2007.
Ahmad, A.; Ahmad, S.P. Weighted analogue of inverse gamma distribution: statistical properties, estimation and simulation study. Pak.j.stat.oper.res.2019, 15(1) (1),25-37.doi: https://doi.org/10.18187/pjsor.v15i1.2238.
Zhang, L.; Zhang, Y.-Y. The Bayesian Posterior and Marginal Densities of the Hierarchical Gamma–Gamma, Gamma–Inverse Gamma, Inverse Gamma–Gamma, and Inverse Gamma–Inverse Gamma Models with Conjugate Priors, Mathematics, 2022,10(21), 4005. doi: https://doi.org/10.3390/math10214005.
Kaewprasert, T.; Niwitpong, S.A.; Niwitpong, S. Confidence Intervals for the Ratio of the Coefficients of Variation of Inverse Gamma Distributions, Applied Science and Engineering Progress 2023,16(1), 5660. https://doi.org/10.14416/j.asep.2021.12.002.
Bickel, P.J.; Doksum, K. A. Mathematical Statistics: Basic Ideas and Selected Topics, Holden- Day, Inc., San Francisco 1977.
Bickel, P.J.; Doksum, K. A. Mathematical Statistics: Basic Ideas and Selected Topics, New York, Chapman and Hall/CRC, I, 2nd ed. 2015, doi: https://doi.org/10.1201/b18312.
Puza, B. Bayesian methods for statistical analysis, The Australian National University Acton ACT 2601, Australia 2015. http://doi.org/10.22459/BMSA.10.2015.
Bayes, R. T. Mathematical Statistics with Applications in R. Chapter 10, Bayesian estimation and inference, Copyright © Elsevier Inc. All rights reserved 2021.
Ramos, P. L.; Mota, A.L.; Ferreira, P.H.; Ramos, E.; Tomazella, V. L. D.; Louzada F. Bayesian analysis of the Inverse Generalized Gamma Distribution using Objective Priors, Journal of Statistical Computation and Simulation 2020.doi: https://doi.org/10.1080/ 00949655.2020.1830991.
Lee, P. M.; Bayesian Statistics: An Introduction, 4th. Wiley, New York 2012.
Ahmad, S.P.; Sultan, R.; Sultan, H. Bayesian Analysis of Normal Distribution-A Simulation Study, International journal of advanced scientific and technical research 2014, 1(4).(ISSN 2249-9954),http://www.rspublication.com/ijst/index.html.
Achcar, JA.; Coelho-Barros, EA.; Cuevas, JRT; Mazucheli, J. Use of Lèvy distribution to analyze longitudinal data with asymmetric distribution and presence of left censored data. Communications for Statistical Applications and Methods 2018, 25(1), 43–60.doi: https://doi.org/10.29220/CSAM.2018.25.1.043.
Mobolaji, A. T.; Dibal, N. P.; Musa, Y. A. An Estimation of Unknown Variance of a Normal Distribution: Application to Borno State Rainfall Data, International Journal of Data Science and Analysis 2019,5(1), 1-5.doi: https://doi.org/10.11648/j.ijdsa.20190501.11.
Dorniani, S.; Mohammadpour, A.; Nematollahi, N. Estimation of the Parameter of Levy Distribution Using Ranked Set Sampling, AUT J. Math. Com. 2021,2(1), 53-60.
doi: https://doi.org/10.22060/ajmc.2020.18499.1037.
Calabria, R.; Pulcini, G. An engineering approach to bayes estimation for the weibull distribution. Micro-Electronics Reliability 1994,34(5), 789–802. https://doi.org/10.1016/0026-2714(94)90004-3.
Kumar, D.; Kumar, P.; Singh, S. K.; Singh, U. A New Asymmetric Loss Function: Estimation of Parameter of Exponential Distribution, Journal of Statistics Applications and Probability Letters 2019,6(1), 37-50. doi: https://doi.org/10.18576/jsapl/060105.
Kumari, R.; Tripathi, Y.M.; Sinha, R.K.; Wang, L. Comparison of Estimation Methods for Reliability Function for Family of Inverse Exponentiated Distributions under New Loss Function, Axioms 2023,12(12), 1096. doi: https://doi.org/10.3390/axioms12121096.
Adegoke, T. M.; Obisesan, K.O.; Oladoja, O. M.; Adegoke, G.K.; Bayesian and Classical Estimations of Transmuted Inverse Gompertz Distribution, RT and A 2023,18(2),(73), 207-222. doi: https://doi.org/10.24412/1932-2321-2023-273-207-222.
Ali S.; Aslam M.; Ali Kazmi S. M. A study of the effect of the loss function on Bayes Estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling, 2013,37(8), 6068–6078. doi: https://doi.org/10.1016/j.apm.2012.12.008.
Goyal, T.; Rai, P.K.; Maurya, S.K.; Bayesian Estimation for Exponentiated Inverted Weibull distribution under Different Loss Functions, International Journal of Pure and Applied Researches 2019, 2(1), 1-13.ISSN:2455-474X.