Evaluation of SLC16A11 Gene Polymorphisms in Type 2 Diabetes Mellitus Patients
Main Article Content
Abstract
The most prevalent form of diabetes, type 2 diabetes mellitus (T2DM), is defined by hyperglycemia in the presence of hyperinsulinemia, which is brought on by insulin resistance and β-cell functional abnormalities of insulin secretion. The work aims to study the association of the SLC16A11 gene with T2DM; besides the 50 healthy individuals who served as the control group, 50 diabetic patients also had their blood drawn. Participants were divided into two groups based on the following criteria: A control group consists of 50 healthy participants between the ages of 20 and 70, while the patient group consists of 50 participants who were diagnosed with diabetes. The patient group had 58% male and 42% female participants, whereas the control group had 52% male and 48% female participants. Despite the fact that many genetic discoveries are relatively recent and have not yet had a significant impact on our understanding of the pathogenesis of diabetes, they have already made a substantial contribution by revealing pathways that could not have been connected to diabetes by presumptive models that already exist. Nevertheless, it's critical to remember that diabetes is probably a far more complex condition than the distinction between T1DM and T2DM suggests.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Revised
Published Online First
References
Farhan, L.O. Determanation of Several Biochemical Parameters in Sera of Iraqi Patients with type 2 Diabetes. Baghdad Science Journal 2015, 12(2), 362-370. https://doi.org/10.21123/bsj.2015.12.2.362-370.
Hassan, H.; Kadhim, N.; Jassim, M. The Impact of Oxidative Stress on The Activity of Adenosine Deaminase and Its Isoenzymes in Nephropathy Patients from Wasit-Iraq. International Journal of Health Sciences 2022, 6(S8), 4968-4979.https://doi.org/10.53730/ijhs.v6nS8.13342.
Alaaraji, S.F.; Alrawi, K.F.; Allah, P.H.S.; Alkrwi, E.N. Evaluation of Serum Malondialdehyde, Glutathione and Lipid Profile Levels in Iraqi Females with Type 2 Diabetes Mellitus. Baghdad Science Journal 2016, 13(2S), 383-391. https://doi.org/10.21123/bsj.2016.13.2.2NCC.0383.
Ahmed, M.H.; Haddad, N.I.; Nori, E. Correlation between Albuminuria Levels and Chitinase 3 like 1 Protein in Iraqi Patients with Type 2 Diabetes Mellitus. Iraqi Journal of Science 2022, 63(1), 21-32. https://doi.org/10.24996/ijs.2022.63.1.3.
Malecki, M.T. Genetics of Type 2 Diabetes Mellitus. Diabetes Research and clinical practice 2005, 68(Suupl 1), S10-S21. https://doi.org/10.1016/j.diabres.2005.03.003.
Halestrap, A.P. The SLC16 Gene Family–Structure, Role and Regulation in Health and Disease. Molecular aspects of medicine 2013, 34 (2-3), 337-349. https://doi.org/10.1016/j.mam.2012.05.003.
Hara, K.; Shojima, N.; Hosoe, J.; Kadowaki, T. Genetic Architecture of Type 2 Diabetes. Biochemical and biophysical research communications 2014, 452 (2), 213-220. https://doi.org/10.1016/j.bbrc.2014.08.012.
Zhao, Y.; Feng, Z.; Ding, Q. Type 2 Diabetes Variants in The SLC16A11 Coding Region Are Not Loss of Function Mutations. Cell Reports 2019, 29 (3), 781-784. https://doi.org/10.1016/j.celrep.2019.09.022.
Kimura, Y.; Higuchi, I.; Kobayashi, M.; Furugen, A.; Narumi, K.; Suzuki, Y.; Miyoshi, H.; Nakamura, A.; Atsumi, T.; Iseki, K., The Association Between SLC16A11 Haplotype and Lipid Metabolism in Japanese Patients with Type 2 Diabetes. Drug Metabolism and Pharmacokinetics 2021, 37, 100376. https://doi.org/10.1016/j.dmpk.2020.100376.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010, 33(Suppl 1), S62–69. https://doi.org/10.2337/dc09-1848.
Jaid, H.K.; Khaleel, F.M.; Salman, I.N.; Abd, B.A. Evaluation of Insulin Resistance and Glutathione-S-transferase in Iraqi Patients with Type 2 Diabetes Mellitus and Diabetic Peripheral Neuropathy. Ibn AL-Haitham Journal For Pure and Applied Sciences. 2022, 35(4), 194–205. https://doi.org/10.30526/35.4.2916.
Groop, L.; Lyssenko, V. Genetics of Type 2 diabetes. An overview. Endocrinol. Nutr 2009, 56 (Suppl 4), 34–37. https://doi.org/10.3390/genes6010087.
Ostrow, B.; Sibbald, R. G.; Taha, N.; Lowe, J., Sex disaggregated diabetes prevalence study in Guyana needed. Diabetes Research and Clinical Practice 2014, 106 (2), e17. https://doi.org/10.1016/j.diabres.2014.07.012.
WHO.WHOreport. 2014. https://doi.org/10.1590/1413-812320152112.17532016
Lyssenko, V.; Jonsson, A.; Almgren, P.; Pulizzi, N.; Isomaa, B.; Tuomi, T.; Berglund, G.; Altshuler, D.; Nilsson, P.; Groop, L. Clinical Risk factors, DNA Variants, and the Development of Type 2 Diabetes. New England Journal of Medicine 2008, 359 (21), 2220-2232. https://DOI%3A%2010.1056/NEJMoa0801869.
Groop, L. Pathogenesis of Type 2 Diabetes: The Relative Contribution of Insulin Resistance and Impaired Insulin Secretion. International journal of clinical practice. Supplement 2000, 113, 3-13. https://doi.org/10.1185/030079903125002351.
Steck, A.K.; Rewers, M.J. Genetics of Type 1 Diabetes. Clinical Chemistry 2011, 57 (2), 176-185. https://doi.org/10.1373/clinchem.2010.148221.
Huber, A.; Menconi, F.; Corathers, S.; Jacobson, E. M.; Tomer, Y. Joint Genetic Susceptibility to Type 1 Diabetes and Autoimmune Thyroiditis: from Epidemiology to Mechanisms. Endocrine reviews 2008, 29 (6), 697-725. https://doi.org/10.1210/er.2008-0015.
Cernea, S.; Dobreanu, M.; Raz, I., Prevention of Type 1 Diabetes: Today and Tomorrow. Diabetes Metabolism Research and Reviews 2010, 26 (8), 602-605. https://doi.org/10.1002/dmrr.1138.
Kyvik, K.O.; Green, A.; Beck-Nielsen, H. Concordance Rates of Insulin Dependent Diabetes Mellitus: A Population Based Study of Young Danish Twins. Bmj. 1995, 311 (7010), 913-917. https://doi.org/10.1136/bmj.311.7010.913.
Al-Jowari, S.A. Comparative Investigation of Thyroid Autoantibodies between Type 1 and Type 2 Diabetes Mellitus Patients in Baghdad City. . 2017, 58(2), 815–819. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/6024.
Polychronakos, C.; Li, Q. Understanding Type 1 Diabetes Through Genetics: Advances and Prospects. Nature Reviews Genetics 2011, 12(11), 781-792. https://doi.org/10.1210/clinem/dgab056.
Hakonarson, H.; Grant, S.F. Genome‐Wide Association Studies (GWAS): Impact on Elucidating the aetiology of diabetes. Diabetes/metabolism Research and Reviews 2011, 27 (7), 685-696. https://doi.org/10.1542/peds.2013-1652.
Groop, L.; Pociot, F. Genetics of Diabetes—Are We Missing the Genes or the Disease? Mol. Cell. Endocrinol. 2014, 382(1), 726–739. https://doi.org/10.3390/genes6010087.
Stankov, K.; Benc, D.; Draskovic, D. Genetic and Epigenetic Factors in Etiology of Diabetes Mellitus Type 1. Pediatrics 2013, 132 (6), 1112-1122. https://doi.org/10.1542/peds.2013-1652.
Forlenza, G.P.; Rewers, M. The Epidemic of Type 1 Diabetes: What Is It Telling Us? Current Opinion in Endocrinology, Diabetes and Obesity. 2011, 18 (4), 248-251. https://doi.org/10.1097/MED.0b013e32834872ce.
Sugihara, S. Genetic Susceptibility of Childhood Type 1 Diabetes Mellitus in Japan. Pediatr Endocrinol Rev 2012, 10 (Suppl 1), 62-71. https://doi.org/10.1542/peds.2013-1652.
Thomas, I.H.; Pietropaolo, M. Type 1 Diabetes: A Genetic Pandora's Box 2010, 11, 511–512. https://doi.org/10.1111/j.1399-5448.2010.00742.x
Groop, L.; Tuomi, T.; Rowley, M.; Zimmet, P.; Mackay, I. R., Latent Autoimmune Diabetes in Adults (LADA)—More Than A Name. Diabetologia 2006, 49, 1996-1998. https://doi.org/10.1007/s00125-006-0345-x.
Tuomi, W.V.; Kazlauskas, R.J. Molecular Basis for Enantioselectivity of Lipase from Pseudomonas Cepacia Toward Primary Alcohols. Modeling, Kinetics, and Chemical Modification of Tyr29 to Increase or Decrease Enantioselectivity. The Journal of Organic Chemistry 1999, 64 (8), 2638-2647. https://doi.org/10.1021/jo981783y.
Tuomi, T. Persisting Antibodies to Glutamic Acid Decarboxylase in Type 1 (Insulin-Dependent) Diabetes Mellitus Are Not Associated with Neuropathy. Diabetologia 1993, 36(7), 685-685. https://doi.org/10.1007/BF00404084.
Tuomi, T.; Santoro, N.; Caprio, S.; Cai, M.; Weng, J.; Groop, L. The Many Faces of Diabetes: A Disease with Increasing Heterogeneity. The Lancet 2014, 383 (9922), 1084-1094. https://doi.org/10.1016/S0140-6736(13)62219-9.
Carlsson, S.; Midthjell, K.; Grill, V. Influence of Family History of Diabetes on Incidence And Prevalence of Latent Autoimmune Diabetes of The Adult: Results From The Nord-Trøndelag Health Study. Diabetes care 2007, 30 (12), 3040-3045. https://doi.org/10.2337/dc07-0718.
Atheeb, A.K.; Hussein, S.Z.; Al-Mudhaffar, S.S. Oxidative Stress Status in Sera of Type 2 Diabetic Iraqi Patients with Coronary Artery Diseases. International Journal of Drug Delivery Technology. 2021, 11(2), 291–297. https://doi.org/10.25258/ijddt.11.2.9.
Mahmoud, E.A.; Al-Bakri, N.A.; Qasim, B.J. Histomorphometrical Study of Placental from Male and Female Neonates of Diabetic Women. Ibn AL-Haitham Journal For Pure and Applied Sciences. 2019, 32(2), 1–8. https://doi.org/10.30526/32.2.2125.
Scott, R.A.; Lagou, V.; Welch, R.P.; Wheeler, E.; Montasser, M.E.; Luan, J.A.; Mägi, R.; Strawbridge, R.J.; Rehnberg, E.; Gustafsson, S. Large-Scale Association Analyses Identify New Loci Influencing Glycemic Traits and Provide Insight Into The Underlying Biological Pathways. Nature Genetics 2012, 44(9), 991-1005. https://doi.org/10.1038/ng0411-388b.
Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; Baker, A.; Snorradottir, S.; Bjarnason, H.; Ng, M.C.Y.; Hansen, T.; Bagger, Y.; Wilensky, R.L.; Reilly, M.P.; Adeyemo, A.; Chen, Y.; Zhou, J.; Gudnason, V.; Chen, G.; Huang, H.; Lashley, K.; Doumatey, A.; So, W.Y.; Ma, R.C.Y.; Andersen, G.; Borch-Johnsen, K.; Jorgensen, T.; Vliet-Ostaptchouk, J.V.V.; Hofker, M.H.; Wijmenga, C.; Christiansen, C.; Rader, D.J.; Rotimi, C.; Gurney, M.; Chan, J.C.N.; Pedersen, O.; Sigurdsson, G.; Gulcher, J.R.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. A Variant in CDKAL1 Influences Insulin Response and Risk of Type 2 Diabetes. Nature Genetics. 2007, 39(6), 770–775. https://doi.org/10.2337/db07-1785.
Murphy, R.; Turnbull, D.M.; Walker, M.; Hattersley, A.T. Clinical Features, Diagnosis and Management of Maternally Inherited Diabetes and Deafness (MIDD) Associated with The 3243A > G Mitochondrial Point Mutation. Diabetic Medicine. 2008, 25(4), 383–399. https://doi.org/10.1111/j.1464-5491.2008.02359.x.
Murphy, R.; Ellard, S.; Hattersley, A.T. Clinical Implications of A Molecular Genetic Classification of Monogenic Beta-Cell Diabetes. Nature Clinical Practice Endocrinology & Metabol. 2008, 4(4), 200–213. https://doi.org/10.1038/ncpendmet0778.
Van den Ouweland, J.M.; Lemkes, H.H.; Ruitenbeek, W.; Sandkuijl, L.A.; de Vijlder, M.F.; Struyvenberg, P.A.; van de Kamp, J.J.; Maassen, J.A. Mutation in Mitochondrial Trna(Leu)(Uur) Gene in A Large Pedigree with Maternally Transmitted Type II Diabetes Mellitus and Deafness. Nature Genetics. 1992, 1(5), 368–371. https://doi.org/10.2337/diabetes.53.2007.S103.
Pearson, E.R.; Flechtner, I.; Njolstad, P.R.; Malecki, M.T.; Flanagan, S.E.; Larkin, B.; Ashcroft, F.M.; Klimes, I.; Codner, E.; Iotova, V.; Slingerland, A.S.; Shield, J.; Robert, J-J.; Holst, J.J.; Clark, P.M.; Ellard, S.; Søvik, O.; Polak, M.; Hattersley, A.T.; Neonatal Diabetes International Collaborative Group. Switching from Insulin to Oral Sulfonylureas in patients with Diabetes Due to kir6.2 Mutations. New England Journal of Medicine. 2006, 355(5), 467–477. https://doi.org/10.1056/NEJMoa061759.
Schneiderman, N.; Llabre, M.; Cowie, C.C.; Barnhart, J.; Carnethon, M.; Gallo, L.C.; Giachello, A.L.; Heiss, G.; Kaplan, R.C.; LaVange, M.L.; Teng, Y.; Villa-Caballero, L.; Avilés-Santa, M.L.. Prevalence of diabetes among Hispanics/Latinos from diverse backgrounds: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes Care 2014, 37(8), 2233–2239. https://doi.org/10.2337/dc13-2939.