Synthesis and Spectral Study of New Guanine Derivative (N-((6-Oxo-6,9-Dihydro-1H-Purin-2-yl)Carbamothioyl)Propionamide) and its Complexes with Some Metals Ion

Main Article Content

Abdullah Sh. Abdullah Alani
https://orcid.org/0000-0002-4820-0859
Basima Muhsen Sarhan
https://orcid.org/0000-0003-3813-5982
Vishwa Deepak Tripathi
https://orcid.org/0000-0003-2802-0292

Abstract

This study included the preparation and characterization of the new guanine derivative (N-((6-oxo-6,9-dihydro-1H-purin-2-yl)carbamothioyl)propionamide), with an exciting chemical structure. The guanine part is a bicyclic heterocyclic base that is connected to a carbamothioyl group by a propionamide linker. This nitrogenous base derivative is prepared in two steps: The first step involves the synthesis of propionyl isothiocyanate from the reaction of propionyl chloride with ammonium thiocyanate in acetone. In contrast, the second step consists of the reaction of ammonium thiocyanate with guanine to obtain the ligand. The study also includes the preparation of new complexes of metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, and Pd+2)  with a prepared guanine derivative. The ligand and complexes were characterized by using infrared spectra, ultraviolet-visible spectra, 1H-N.M.R., 13C-N.M.R. spectra, and elemental analysis (C.H.N.S.): molar conductivity measurement, magnetic susceptibility, atomic absorption, and melting point. The results of these studies showed that general formulas for these complexes were given [MCl2(O.P.P.)2], M = (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, and Pd+2). It was found that the geometric shape of all the prepared complexes was an octahedron.

Article Details

How to Cite
Synthesis and Spectral Study of New Guanine Derivative (N-((6-Oxo-6,9-Dihydro-1H-Purin-2-yl)Carbamothioyl)Propionamide) and its Complexes with Some Metals Ion. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(2), 285-297. https://doi.org/10.30526/37.2.3313
Section
Chemistry

How to Cite

Synthesis and Spectral Study of New Guanine Derivative (N-((6-Oxo-6,9-Dihydro-1H-Purin-2-yl)Carbamothioyl)Propionamide) and its Complexes with Some Metals Ion. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(2), 285-297. https://doi.org/10.30526/37.2.3313

Publication Dates

References

Berg, J.M. Principles of bioinorganic chemistry, University Science Books,Mill valley, California, 1994, 1–6.

https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1016/0307-4412%2895%2990685-1

Li, C.; Krautler, B. Transition metal complexes of phyllobilins - a new realm of bioinorganic chemistry, Dalt Trans., 2015,44(22),10116–10127, https://doi: 10.1039/C5DT00474H.

Bagchi, A.N.; Mukherjee, P.R.; Raha, A.N. A review on transition metal complex-mordern weapon in medicine.Int. J. Recent Adv. Pharm. Res., 2015,5,171-180. https://www.researchgate.net/profile/AnindyaBagchi/publication/280730755_A_REVIEW_ON_TRANSITION_METAL_COMPLEX-MORDERN_ WEAPON_IN_MEDICINE/links/55c3749908aeca747d5f7f8a/A-REVIEW-ON-TRANSITION-METAL-COMPLEX-MORDERN-WEAPON-IN-MEDICINE.pdf.

Hunsaker, E.W.; Franz, K.J. Emerging opportunities to manipulate metal trafficking for therapeutic benefit, Inorg Chem., 2019,58(20),13528–13545. https://doi.org/10.1021/acs.inorgchem.9b01029.

Spencer, J.; Read, J.; Sessions, R.B.; Howell, S.; Blackburn, G.M.;Gamblin, S.J.Antibiotic recognition by binuclear metallo-β-lactamases revealed by x-ray crystallography, J Am Chem Soc., 2005 ,127(41), 14439–14444. https://doi.org/10.1021/ja0536062.

Andreini,C.;Bertini, I.;Cavallaro, G.; Holliday, G.L.; Thornton, J.M.Metal ions in biological catalysis From enzyme databases to general principles, J Biol Inorg Chem., 2008, 13(8),1205–1218. https://link.springer.com/article/10.1007/s00775-008-0404-5#article-info.

Tanaka, Y. ; Nakagawa, N.; Kuramitsu, S.;Yokoyama, S.; Masui, R. Novel reaction mechanism of GTP cyclohydrolase I. High-resolution X-ray crystallography of thermus thermophilus HB8 enzyme complexed with a transition state analogue, the 8-oxoguanine derivative, J Biochem., 2005, 138(3), 263–275. https://doi.org/10.1093/jb/mvi120.

Orts-Arroyo, M.; Gutiérrez, F.; Gil-Tebar, A.; Ibarrola-Villava, M.; Jiménez-Martí, E.; Silvestre-Llora, A.; Castro, I.; Ribas, G.; Martínez-Lillo, J. A novel adenine-based diruthenium (III) complex synthesis, crystal structure, electrochemical properties and evaluation of the anticancer activity, Journal of Inorganic Biochemistry, 2022, 1(232),111812. https://doi.org/10.1093/jb/mvi120.

Li, Y.; Dong, J.; Zhao, P.;Hu, P.; Yang, D.; Gao, L.; Li, L. Synthesis of amino acid schiff base nickel (II) complexes as potential anticancer drugs in vitro, Bioinorg Chem Appl., 2020, 2020, 8834859. https://doi: 10.1155/2020/8834859.

Szymańska, M.; Pospieszna-Markiewicz, I.; Mańka, M.; Insińska-Rak ,M.; Dutkiewicz, G.; Patroniak, V.; Fik-Jaskółka, M.A. Synthesis and spectroscopic investigations of schiff base ligand and its bimetallic Ag (I) complex as DNA and BSA binders, Biomolecules, 2021,11(10),1449. https://doi.org/10.3390/biom11101449.

Chen, C.K.J.; Hambley ,T.W. The impact of highly electron withdrawing carboxylato ligands on the stability and activity of platinum(IV) pro-drugs, Inorganica Chim Acta., 2019,1(494),84–90. https://doi.org/10.1016/j.ica.2019.05.001.

Skalnaya, M.G.; Skalny, A.V. Essential trace elements in human health,a physician’s view. Tomsk, Publishing House of Tomsk State University, 2018,S66, pp. 224.

https://trace-element.org/sites/default/files/2022-02/essential-trace-elements-in-human-health-a-physician-s-view_124_fr_0.pdf.

Correa, R.S.; Bomfim, L.M.; Oliveira, K.M.; Moreira, D.R.M.; Soares, M.B.P.; Ellena, J.; Daniel, P.; Bezerra, A.A.B. Ru(II) complexes containing uracil nucleobase analogs with cytotoxicity against tumor cells, J Inorg Biochem., 2019,198(2),110751. https://en.trace-element.org/sites/default/files/2022-02/essential-trace-elements-in-human-health-a-physician-s-view_124_fr_0.pdf.

Sherin, D.; Manojkumar, T.K. Exploring the selectivity of guanine scaffold in anticancer drug development by computational repurposing approach, Sci Rep., 2021,11(16251),1-11. https://doi:10.1038/s41598-021-95507-4.

Marotta, C.; Giorgi, E.; Binacchi, F.; Cirri, D.; Gabbiani, C.; Pratesi, A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies, Inorganica Chim Acta., 2023, 548(121388),1-26. https://doi:10.1016/j.ica.2023.121388.

Jaber, S.S.; Sarhan, B.M. Synthesis and characterization of some new matals complexes of (propionyl carbamothioyl) valine (PCV), Pakistan J Med Heal Sci., 2022,16(4),420–423.

https://doi.org/10.53350/pjmhs22164420.

Kader, T.A.; Sarhan, B.M. Synthesis and spectroscopic study of new ligand 3-(acetylthioureido) propanoic acid with their metal complexes, Int J Health Sci (Qassim, 2022,6(S2),11716–11728. https://doi:10.53730/ijhs.v6nS2.8128.

Alwan, T.B.; Sarhan, B.M. Synthesis and characterization of some metal complexes of [1-(4-bromo-2-methyl-phenyl)-3-(4-methoxybenzoyl)-thiourea, J Glob Pharma Technol., 2018,10(8),42–50. https://www.researchgate.net/publication/355486493_Synthesis_and_Characterization_of_Some_Metal_Complexes_of_1-4-_Bromo-2-Methyl-Phenyl-3-4-Methoxybenzoyl-Thiourea.

Kindeel, A.S. Synthesis and characterization of new metals complexes of [N- (acetyl amino ) thioxomethyl] valine, Ibn Al-Haitham J Pure Appl Sci., 2013,26(1),225–233.

https://www.iasj.net/iasj/download/4a4ca1072da6558d.

Uchida, K.; Toyama, A.; Tamura, Y.; Sugimura, M.; Mitsumori , F.; Furukawa, Y.; Takeuchi, H.; Harada, I. Interactions of guanine derivatives with ethylenediamine and diethylenetriamine complexes of palladium(II) in solution: Pd binding sites of the guanine ring and formation of a cyclic adduct, [{Pd(en) (guanine ring)}4], Inorg Chem., 1989,28(11),2067–2073. https://doi.org/10.1021/ic00310a012.

Fayyadh, B.M.; Jaafar, W.A.; Sarhan, B.M. Synthesis, structural study, and biological activity evaluation of Vo(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) complexes with new schiff base ligand derived from pyrazine ,International Journal of Drug Delivery Technologythis, 2021, 11(1), 64–69. https://www.researchgate.net/profile/Wurood-Ali/ publication/ 350878583_ Synthesis_ Structural_Study_and_Biological_Activity_Evaluation_of_VOII_MnII_CoIINiII_CuII_ZnII_CdII_and_HgII_Complexes_with_New_Schiff_Base_Ligand_Derived_from_Pyrazine/links/6078355f881fa114b4033b6e/Synthesis-Structural-Study-and-Biological-Activity-Evaluation-of-VOII-MnII-CoII-NiII-CuII-ZnII-CdII-and-HgII-Complexes-with-New-Schiff-Base-Ligand-Derived-from-Pyrazine.pdf.

Chennakrishnan, S.; Ravi Kumar, S.M.; Shanthi, C.; Srineevasan, R.; Kubendiran, T.; Sivavishnu, D.; Packiya raj, M. Synthesis of the semi-organic nonlinear optical crystal l-glutamic acid zinc chloride and investigation of its growth and physiochemical properties, J Taibah Univ Sci., 2017,11(6),955–965. https://doi.org/10.1016/j.jtusci.2017.01.001.

Sarhan, B.M.; Abed, A.H.; Rumez, R.M. Synthesis and characterization of some mixed ligand complexes containing (8-hydroxyquinoline) and (2- picoline) with some metal Ions, Baghdad Sci J., 2013, 10(2),396–404. https://www.iasj.net/iasj/download/f1ef85c3b330c698.

Gastaca, B.; Galletti, G.; Sánchez, H.R.; Diez, R.P.; Schiavoni, M.M.; Furlong, J.J.P. GC/MS Analyses of thiosemicarbazones synthesized from acetophenones: Thermal decay and mass spectra features, Int J Anal Mass Spectrom Chromatogr., 2015,3(1),1-13. https://doi: 10.4236/ijamsc.2015.31001.

Prokopchuk, E.D.; Sonnenberg, F.J.; Meyer, N.; Zimmer-De Iuliis, M.; Lough, J.A.; Morris, H.R. Spectroscopic and DFT study of ferraaziridine complexes formed in the transfer hydrogenation of acetophenone catalyzed using trans-[Fe(CO)(NCMe)(PPh2C6H4CH═NCH2−)2-κ4P,N,N,P](BF4)2.Organometallics, 2012,31(8), 3056–3064. https://doi.org/10.1021/om201170f.

Singh, V.P.; Katiyar, A. Synthesis, structural studies and bio-activity of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with p-amino acetophenone salicyloyl hydrazone, J Coord Chem. 2008,61(20), 3200–3212. https://doi.org/10.1080/00958970802017646.

Chandra, S.; Gupta, K. Twelve-, fourteen- and sixteen-membered macrocyclic ligands and a study of the effect of ring size on ligand field strength. Transit Met Chem., 2002, 27(2002),329–332. https://doi.org/10.1023/A:1014898706298.

Kadhim, M. A.; Sh. Abdullah Alani, A.; Hussein, N.M. Synthesis, characterization and biological evaluation of some phthalazine derivatives. Materials Today: Proceedings, 2022, 5772. https://doi.org/10.1016/j.matpr.2021.04.156.

A. Al-Krboly, M.; M. Sarhan, B.; Alany, Sh.A. Synthesis and Characterization of new metals complexes of [N-(4- chlorobenzoylamino)-thioxomethyl]valine (cbv). IOSR Journal of Applied Chemistry, 2014, 7(11),67–73. https://doi.org/10.9790/5736-071116773.

Fayyadh, B.M.; Jaafar, W.A.; Sarhan, B.M. Synthesis, structural study, and biological activity evaluation of Vo(II), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) complexes with new schiff base ligand derived from pyrazine. International Journal of Drug Delivery Technology, 2021, 11(1), 64–69. https://doi.org/10.25258/ijddt.11.1.11.