Effect of Humic acid, Cytokinin and Arginine on Qualitative Traits and Yield of Bean Plant Phaseolus vulgaris L. Under Salt Stress

Authors

DOI:

https://doi.org/10.30526/37.2.3319

Keywords:

Arginine, bean plant, Cytokinin, Humic acid, Phaseolus vulgaris L., salt stress

Abstract

To Investigate optimum growth and production under salinity, some materials have been added in sufficient quantities to obtain an ideal crop of salt sensitive bean plants. This experiment was conducted during the spring growing season in 2022 in the agricultural fields in Abu Ghraib, Baghdad governorate, to study the effects of humic acid, cytokinin, and arginine and their interaction on 6 parameters reflecting the total of quantitative and yield traits of bean plants var. Astrid (from MONARCH seeds, China). A factorial design with 3 replicates was used, the first factor included 3 groups of Humic acid; H0, H1 (6 Kg.h-1), and H2 (12 Kg.h-1). The second factor included 2 groups; C0 (spray distilled water), and C1 (100 mg.l-1 benzel adenine), and the third factor included 3 groups of Arginine; A0 (spray distilled water), A1 (100 mg.l-1), and A2 (200 mg.l-1). For humic acid, the results showed that H2 treatment caused the significantly highest values in all the studied traits, except for proline. Results of cytokinin treatment showed that C1 treatment led to significantly higher values in all the studied traits, except for proline. For arginine treatment, the results indicated that there was no significant difference between A1, and A2. For the binary overlap among treatments, the results showed the highest values were  H2C1, A2C1, and H2A2, except for chlorophyll content was H2A1. The H2A2C1 triple overlap treatment resulted in the highest values compared to all other treatments for all traits. It is evident that from the results, proline was the highest value in the control treatment of all traits. In conclusion, the present study found that humic acid, cytokinin, arginine and their interactions enhance significantly the quantitative traits and production of bean plants under salinity stress.

References

Azani, N.; Babineau, M.; Bailey, C.D.; Banks, H.; Barbosa, A.; Pinto, R.P.; Boatwright, J.; Borges, L.; Brown, G.; Bruneau, A.; Candido, E.; Cardoso, D.; Chung, K.; Clark, R.; Conceição, A.D.; Crisp, M.; Cubas, P.; Delgado-salinas, A. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon, 2017,66, 1, 44–77. https://doi.org/10.12705/661.3.

Hasanuzzaman, M.; Araújo, S.; Gill, S.S. The Plant Family Fabaceae. Springer, Springer Nature Singapore Pte Ltd, 2020. https://doi.org/10.1007/978-981-15-4752.

Smýkal, P.; Coyne, C.J.; Ambrose, M.J.; Maxted, N.; Schaefer, H.; Blair, M.W.; Berger, J.; Greene, S.L.; Nelson, M.N.; Besharat, N.; Vymyslický, T.; Toker, C.; Saxena, R.K.; Roorkiwal, M.; Pandey, M.K.; Hu, J.; Li, Y.H.; Wang, L.X.; Guo, Y.; Qiu, L.J.; Redden, R.J.; Rajeev K. Varshney, R.K. Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Critical Reviews in Plant Sciences, 2015, 34, 1–3, 43–104, 2015. DOI: https://doi.org/10.1080/07352689.2014.897904.

Choe, U.; Chang, L.; Ohm, J.-B.; Chen, B.; Rao, J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocolloids, 2022; 133,108000. https://doi.org/10.1016/j.foodhyd.2022.108000.

Punia, S.; Dhull, S.B.; Sandhu, K.S.; Kaur, M.; Purewal, S.S. Kidney bean (Phaseolus vulgaris) starch: A review. Legume Science, 2020, 2, 3, e52. https://doi.org/10.1002/leg3.52.

Rasool, S. Mahajan, R.; Nazir, M.; Bhat, K.A.; Shikari, A.B.; Ali, G.; Bhat, B.; Bhat, B.A.; Shah, M.D.; Murtaza, I.; Nazir, N.; Sofi, P.A.; Bhat, M.A.; Zargar, S.M. SSR and GBS based GWAS study for identification of QTLs associated with nutritional elemental in common bean (Phaseolus vulgaris L.). Scientia Horticulturae, 2022, 306, 111470. https://doi.org/10.1016/j.scienta.2022.111470.

Gunjača, J.; Carović-Stanko, K.; Lazarević, B.; Vidak, M.; Petek, M.; Liber, Z.; Šatović, Z. Genome-wide association studies of mineral content in common bean. Frontiers in Plant Science, 2021; 12, 636484. DOI: 10.3389/fpls.2021.636484.

Nolan, R.; Shannon, O.M.; Robinson, N.; Joel, A.; Houghton, D.; Malcomson, F.C. It’s no has bean: A review of the effects of white kidney bean extract on body composition and metabolic health. Nutrients, 2020; 12, 5, 1398. doi: 10.3390/nu12051398.

Alcázar-Valle, M.; Lugo-Cervantes, E.; Mojica, L.; Morales-Hernández, N.; Reyes-Ramírez, H.; Enríquez-Vara, J.N.; García-Morales, S. Bioactive compounds, antioxidant activity, and antinutritional content of legumes: a comparison between four Phaseolus species. Molecules, 2020, 25, 15, 3528. DOI: 10.3390/molecules25153528

Organization, W.H. The state of food security and nutrition in the world 2019: safeguarding against economic slowdowns and downturns, 2019. Food & Agriculture Org. 2019.

Population Data Portal.[Online]. Available: https://pdp.unfpa.org/.

van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2021,2, 7, 494–501. DOI: 10.1038/s43016-021-00322-9.

Karavidas, I.; Ntatsi, G.; Vougeleka, V.; Karkanis, A.; Ntanasi, T.; Saitanis, C.; Agathokleous, E.; Ropokis, A.; Sabatino, L.; Tran, F. Agronomic practices to increase the yield and quality of common bean (Phaseolus vulgaris L.): a systematic review. Agronomy, 2022, 12, 2, 271. https://doi.org/10.3390/agronomy12020271.

FAOSTAT. [Online]. Available: https://www.fao.org/faostat/en/#home.

Ding Z.; Kheir, A.M.S., Ali, M.G.M.; Ali, O.A.M.; Abdelaal, A.I.N.; Lin, Z.; Zhou, Z.; Wang, B.; Liu, B.; He, Z. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports, 2020, 10, 1, 1–13. https://doi.org/10.1038/s41598-020-59650-8.

Ennoury, A.; BenMrid, R.; Nhhala, N.; Roussi, Z.; Latique, S.; Zouaoui, Z.; Nhir, M. River’s Ulva intestinalis extract protects common bean plants (Phaseolus vulgaris L.) against salt stress. South African Journal of Botany., 2022, 150, 334–341, 2022. https://doi.org/10.1016/j.sajb.2022.07.035.

Uzair, M.; Ali, M.; Fiaz, S.; Attia, K.; Khan, N.; Al-Doss, A.A.; Ramzan Khan, M.; Ali, Z. The characterization of wheat genotypes for salinity tolerance using morpho-physiological indices under hydroponic conditions. Saudi J. Biol. Sci., 2022, 29, 6, 103299. DOI: 10.1016/j.sjbs.2022.103299

Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.W.; De Meyer, S.; Trujillo, M.E. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology., 2018, 68, 1, 461–466. DOI: 10.1099/ijsem.0.002516.

AL-Kazzaz, A.G.M. and AL-Kareemawi, I.H. K. Foliar Spraying Alphatocopherol Enhances Salinity Stress Tolerance in Wheat Plant Triticum aestivum L. Ibn Al-Haitham Journal for Pure and Applied Sciences, 2021, 34, 3, 10–16. https://doi.org/10.30526/34.3.2673.

Siddiqui, M.H.; Mohammad, F.; Khan, M.N.; Al-Whaibi, M.H.; Bahkali, A.H.A. Nitrogen in relation to photosynthetic capacity and accumulation of osmoprotectant and nutrients in Brassica genotypes grown under salt stress. Agricultural Sciences in China, 2010, 9, 5, 671–680. https://doi.org/10.1016/S1671-2927(09)60142-5.

Kafi, M.; Goldani, M.; Jafari, M.H.S. Effectiveness of nutrient management in managing saline agro-ecosystems: a case study of Lens culinaris Medik. Pakistan Journal of Botany, 2012; 44, 269–274.

Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: a review. Biological Agriculture & Horticulture, 2015, 31, 1, 1–17. https://doi.org/10.1080/01448765.2014.964649.

Meganid, A.S.; Al-Zahrani, H.S.; El-Metwally, M.S. Effect of humic acid application on growth and chlorophyll contents of common bean plants (Phaseolus vulgaris L.) under salinity stress conditions. International Journal of Innovative Research in Science, Engineering and Technology, 2015, 4, 5, 2651–2660. DOI: 10.15680/IJIRSET.2015.0405001.

Saidimoradi, D.; Ghaderi, N.; Javadi, T. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae (Amsterdam)., 2019, 256, 108594. https://doi.org/10.1016/j.scienta.2019.108594.

Çimrin, K.M.; Türkmen, Ö.; Turan, M.; Tuncer, B. Phosphorus and humic acid application alleviate salinity stress of pepper seedling. African Journal of Biotechnology, 2010, 9, 36.

Hwang, I.; Sheen, J.; Müller, B. Cytokinin signaling networks. Annual Review of Plant Biology, 2012, 63, 353–380. DOI: 10.1146/annurev-arplant-042811-105503.

Latef, A.A.A.; Hasanuzzaman, M.; Tahjib-Ul-Arif, M. Mitigation of salinity stress by exogenous application of cytokinin in faba bean (Vicia faba L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2021; 49, 1, 12192. DOI: https://doi.org/10.15835/nbha49112192.

Argueso, C.T.; Ferreira, F.J.; Kieber, J.J. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant, Cell and Environment, 2009, 32, 9, 1147–1160. https://doi.org/10.1111/j.1365-3040.2009.01940.x

Ramadan, A.A.; Abd Elhamid, E.M.; Sadak, M.S. Comparative study for the effect of arginine and sodium nitroprusside on sunflower plants grown under salinity stress conditions. Bulletin of the National Research Centre, 2019, 43, 1, 1–12. https://doi.org/10.1186/s42269-019-0156-0.

AL-Hamdany, S.A.W.; Mohammed, M.S. Effect of salinity of irrigation water and spraying amino acids (proline, arginine) in the growth and holds potato Solanum. tuberosum L. Diyala Agricultural Sciences Journal, 2014, 6, 2, 154–163. https://journal.djas.uodiyala.edu.iq/index.php/dasj/article/view/2709.

Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological implications of arginine metabolism in plants. Frontiers in Plant Science, 2015, 6, 534. doi: 10.3389/fpls.2015.00534.

Wang, T.; Liu, Q., Wang, N.; Dai, J.; Lu, Q.; Jia, X.; Lin, L.; Yu, F.; Zuo, Y. Foliar arginine application improves tomato plant growth, yield, and fruit quality via nitrogen accumulation. Plant Growth Regulation., 2021, 95, 421–428. https://doi.org/10.1007/s10725-021-00752-2.

Peña Calzada, K.; Olivera Viciedo, D.; Habermann, E.; Calero Hurtado, A.; Lupino Gratão, P.; De Mello Prado, R.; Lata-Tenesaca, L.F.; Martinez, C.A.; Ajila Celi, G.E.; Rodríguez, J.C. Exogenous application of amino acids mitigates the deleterious effects of salt stress on soybean plants. Agronomy, 2022 ,12, 9, 2014. https://doi.org/10.3390/agronomy12092014.

Kim, Y.; Mun, B.G.; Khan, A.L.; Waqas, M.; Kim, H.H.; Shahzad, R.; Imran, M.; Yun, B.W.; Lee, I. J. Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One, 2018, 13, 3, e0192650. DOI: 10.1371/journal.pone.0192650.

Morton, M.J.L.; Awlia, M.; Al-Tamimi, N.; Saade, S.; Pailles, Y.; Negrão, S.; Tester, M.. Salt stress under the scalpel–dissecting the genetics of salt tolerance. The Plant journal : for Cell and Molecular Biology, 2019, 97, 1, 148–163. DOI: 10.1111/tpj.14189

Mohammed, H.A. Effect of Exogenous Application of Hydrogen Peroxide and Abscisic Acidfor the Wheat Plant Under Salt Stress. Ibn Al-Haitham Journal for Pure and Applied Sciences, 2016, 29, 3, 316–328. https://jih.uobaghdad.edu.iq/index.php/j/article/view/723.

Nadeem, M.; Li, J.; Yahya, M.; Wang, M.; Ali, A.; Cheng, A.; Wang, X.; Ma, C. Grain legumes and fear of salt stress: Focus on mechanisms and management strategies. International Journal of Molecular Sciences, 2019, 20, 4, 799. https://doi.org/10.3390/ijms20040799.

Talei, D.; Kadir, M.A.; Yusop, M.K.; Valdiani, A.; Abdullah, M.P. Salinity effects on macro and micronutrients uptake in medicinal plant King of Bitters (Andrographis paniculata Nees.). Plant Omics Journal, 2012, 3, 5.

Masciandaro, G.; Ceccanti, B.; Ronchi, V.; Benedicto, S.; Howard, L. Humic substances to reduce salt effect on plant germination and growth.

Communications in Soil Science and Plant Analysis, 2002, 33, 3-4, 365–378. https://doi.org/10.1081/CSS-120002751.

Al-Hadethi, A.A.H.; Al-Falahi, M.N.A.; Nema, A.S. Some Cations Movement in Calcareous Soil Columns Under effect of Saline Water Mixed With Humic Acid. Iraqi Journal Of Agricultural Sciences., 2019, 50, 4, 1313–1323. DOI: https://doi.org/10.36103/ijas.v50i5.796.

Özaktan, H.; Ciftci, C.; Uzun, S.; Uzun, O. Kaya, M. Effects of humic acid, microbiological fertilizer and phosphate rock on yield and yield components of field bean (Phaseolus vulgaris L.). Fresenius Environmental Bulletin., 2020, 29, 2, 856-863.

Kisko, M.F.K.; Ali, Z.A.; Kadhum, N.J.; Abid, N.S. Effects of nitrogen and sulfur sprays on the growth and production of broccoli (Brassica oleracea var. Italica L.). Baghdad Science Journal., 2021, 18, 3, 501–508. DOI: https://doi.org/10.21123/bsj.2021.18.3.0501.

Linh, N.T.; Cham, L.T.T.; Thang, V.N. Effects of Salinity Stress on the Growth, Physiology, and Yield of Soybean (Glycine max (L.) Merrill). Vietnam Journal of Agricultural Sciences, 2021, 4, 2, 1043–1055.

Ren, J.; Ye, J.; Yin, L.; Li, J.; Deng, X.; Wang, S. Exogenous melatonin improves salt tolerance by mitigating osmotic, ion, and oxidative stresses in maize seedlings. Agronomy, 2020, 10, 5, 663. https://doi.org/10.3390/agronomy10050663.

Freitas, I.S.; Trennepohl, B.I.; Acioly, T.M.S.; Conceição, V.J.; Mello, S.C.; Dourado Neto, D.; Kluge, R.A.; Azevedo, R.A. Exogenous Application of L-Arginine Improves Protein Content and Increases Yield of Pereskia aculeata Mill. Grown in Soilless Media Container. Horticulturae, 2022, 8, 2, 142. https://doi.org/10.3390/horticulturae8020142.

Siddappa, S.; Marathe, G.K. What we know about plant arginases? Plant Physiology and Biochemistry., 2020, 156, 600–610. doi: DOI: 10.1016/j.plaphy.2020.10.002

Joshi, S.; Nath, J.; Singh, A.K.; Pareek, A. Joshi, R. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants. Physiologia Plantarum, 2022, 174, 3, e13702. DOI: 10.1111/ppl.13702.

Filiz, E.; Akbudak, M.A. Ammonium transporter 1 (AMT1) gene family in tomato (Solanum lycopersicum L.): Bioinformatics, physiological and expression analyses under drought and salt stresses. Genomics, 2020, 112, 5, 3773–3782. DOI: 10.1016/j.ygeno.2020.04.009.

Downloads

Published

20-Apr-2024

Issue

Section

Biology

Publication Dates