Hybrid Efficient Stream Cipher KeyGenerator Based on LFSR's and Chaotic Map

Main Article Content

Dina H. Abbaas
Ayad A. AbdulSalam

Abstract

Communication security that depends on chaos can be considered as a new approach which provides protection and security of communications and maintains confidentiality because Chaos theory can be implemented in cryptosystem successfully.


A stream cipher, on the other hand, is a type of symmetric cryptosystem in which the plaintext is divided into small entities known as characters. The key in stream cipher is typically generated by a random bit generator. Many key stream generators employ linear feedback shift registers (LFSRs). LFSR systems are made up of a group of LFSR units and a combining function (CF) unit. The plaintext is encrypted one bit at a time. The key is fed into a random bit generator, which produces a long series of binary signals. This "key-stream" k is then combined with plaintext m, typically via a bit-wise XOR (Exclusive-OR modulo 2 addition), to produce the ciphertext stream, which employs the same random bit generator and seed.


In this paper we will introduce a new stream cipher keygenerator which using a hybrid between chaotic and combination of Linear Feedback Shift Registers (LFSR's). The proposed generator can be used to protect different types of data files (text, image, audio and video). Many kinds of tests are applied to specifying the goodness of the proposed keygenerator. The results of testing prove the efficiency of the suggested system.

Article Details

How to Cite
[1]
H. Abbaas, D. and A. AbdulSalam, A. 2024. Hybrid Efficient Stream Cipher KeyGenerator Based on LFSR’s and Chaotic Map. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 1 (Jan. 2024), 464–476. DOI:https://doi.org/10.30526/37.1.3321.
Section
Computer

Publication Dates

References

Ali, S.; Abdul, A. Data Security for Cloud Computing Based on Elliptic Curve Integrated Encryption Scheme (ECIES) and Modified Identity Based Cryptography (MIBC). Int. J. Appl. Inf. Syst. 2016, 10, 7–13, doi:10.5120/ijais2016451517. DOI: https://doi.org/10.5120/ijais2016451517

Bhardwaj, I.; Kumar, A.; Bansal, M. A Review on Lightweight Cryptography Algorithms for Data Security and Authentication in IoTs. 4th IEEE Int. Conf. Signal Process. Comput. Control. ISPCC 2017 2017, 2017-Janua, 504–509, doi:10.1109/ISPCC.2017.8269731. DOI: https://doi.org/10.1109/ISPCC.2017.8269731

Abdul-Hadi, A.M.; Saif-aldeen, Y. abdul-sahib; Tawfeeq, F.G. Performance Evaluation of Scalar Multiplication in Elliptic Curve Cryptography Implementation Using Different Multipliers Over Binary Field GF (2233). J. Eng. 2020, 26, 45–64, doi:10.31026/j.eng.2020.09.04.

Trappe, W. Introduction to Cryptography with Coding Theory; Pearson Education India, 2006; ISBN 8131762386.

Brandau, M.A. Implementation of a Real-Time Voice Encryption System. 2008.

Luma, A.; Selimi, B.; Ameti, L. Using Elliptic Curve Encryption and Decryption for Securing Audio Messages. In Proceedings of the Transactions on Engineering Technologies: World Congress on Engineering 2014; Springer, 2015; pp. 599–613. DOI: https://doi.org/10.1007/978-94-017-9804-4_42

Shree, D. Available Online at Www.Ijarcs.Info A Review on Cryptography , Attacks and Cyber Security. 2017, 8, 2015–2018.

Koblitz, N.; Menezes, A.; Vanstone, S. The State of Elliptic Curve Cryptography. Des. codes Cryptogr. 2000, 19, 173–193. DOI: https://doi.org/10.1023/A:1008354106356

Ghazi, A.A.; Ali, F.H. Robust and Efficient Dynamic Stream Cipher Cryptosystem. Iraqi J. Sci. 2018, 59, 1105–1114, doi:10.24996/IJS.2018.59.2C.15.

Golomb, S.W. Shift Register Sequences: Secure and Limited-Access Code Generators, Efficiency Code Generators, Prescribed Property Generators, Mathematical Models; World Scientific, 2017; ISBN 9814632023.

Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography. 2018, doi:10.1201/9780429466335. DOI: https://doi.org/10.1201/9780429466335

Naser, A.G.; Majeed, F.A.H. Constructing of Analysis Mathematical Model for Stream Cipher Cryptosystems 2017, 58, 707–715.

Sadkhan, S.B.; Mohammed, R.S. Proposed Random Unified Chaotic Map as PRBG for Voice Encryption in Wireless Communication. Procedia Comput. Sci. 2015, 65, 314–323, doi:10.1016/j.procs.2015.09.089. DOI: https://doi.org/10.1016/j.procs.2015.09.089

Hobincu, R.; Datcu, O. A Novel Chaos Based PRNG Targeting Secret Communication. 2018 12th Int. Conf. Commun. COMM 2018 - Proc. 2018, 2018-January, 459–462, doi:10.1109/ICComm.2018.8484795.

Naik, R.B.; Singh, U. A Review on Applications of Chaotic Maps in Pseudo-Random Number Generators and Encryption. Ann. Data Sci. 2022, doi:10.1007/s40745-021-00364-7.

Kubba, Z.M.J.; Hoomod, H.K. Modified PRESENT Encryption Algorithm Based on New 5D Chaotic System. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, doi:10.1088/1757-899X/928/3/032023. DOI: https://doi.org/10.1088/1757-899X/928/3/032023

Thesis, A.; In, B.; Fulfillment, P.; The, O.F.; For, R.; Abdul, F.; Hameed, R.; By, S. 86. 2017.

Fúster-Sabater, A.; Cardell, S.D. Linear Complexity of Generalized Sequences by Comparison of PN-Sequences. Rev. la Real Acad. Ciencias Exactas, Fis. y Nat. - Ser. A Mat. 2020, 114, 1–18, doi:10.1007/s13398-020-00807-5.

Doʇanaksoy, A.; Sulak, F.; Uʇuz, M.; Şeker, O.; Akcengiz, Z. New Statistical Randomness Tests Based on Length of Runs. Math. Probl. Eng. 2015, 2015, doi:10.1155/2015/626408. DOI: https://doi.org/10.1155/2015/626408

Elkamchouchi, H.M.; Saleh, G.A.; Saleh, Y.A. Efficient Speech-Based Random Number Generators. 2011, 7.

Alsaadi, A.A.; Naser Al-Shammari, A.G. Enhancement of Non-Linear Generators and Calculate the Randomness Test for Autocorrelation Property. Iraqi J. Sci. 2019, 60, 2229–2236, doi:10.24996/ijs.2019.60.10.17.