Synthesis and Study Medical Application of Nanocomposites Based on grafted Chitosan /Polyvinyl alcohol

Main Article Content

Ruwaidah S.Saeed
Widad Abed Shlaka
El-Sayed Negim

Abstract

In the present study, synthesis of bis Schiff base [I, II] by reaction of one mole of terephthalaldehyde with two mole of 2-amino-5-mercapto-1,3,4-thiadiazole or 4-amino benzene thiol in the ethanol absolute, then compounds [I,II]  were reacted with Na2CO3 of distilled H2O, then chloroacetic acid was added to yield compounds [III,IV]. O-chitosan derivatives [V,VI] were synthesized by reaction of chitosan with compounds [III,IV] in acidic media in distilled water according to the steps of Fischer. O–chitosan (grafted chitosan) [V,VI] was blended with synthetic polymer polyvinyl alcohol (PVA) to produce polymers [VII,VIII], then these polymers were blended with nano: Gold or Silver by using a hotplate stirrer for 3 hours to produce nanocomposites [IX- XII]. The synthesized polymers were identified using spectral analysis techniques, including FTIR,1H-NMR, and scanning electron microscope (SEM). Molecular docking was studied, where operations are used to predict the binding status of compounds with the enzyme and to calculate the free energy (ΔG) of the prepared compounds. Finally, the study of biological activities was screened via two types of bacteria. Also, the anti-cancer activity against human lung adenocarcinoma cells (A549) was studied and compared with standard cell line [REF(R7540) Rat Embryonic Fibroblasts] of some of the blended polymers and nanocomposites, then the acute toxicity test of some nanocomposites was performed.

Article Details

How to Cite
Synthesis and Study Medical Application of Nanocomposites Based on grafted Chitosan /Polyvinyl alcohol . (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 236-250. https://doi.org/10.30526/37.1.3327
Section
Chemistry

How to Cite

Synthesis and Study Medical Application of Nanocomposites Based on grafted Chitosan /Polyvinyl alcohol . (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 236-250. https://doi.org/10.30526/37.1.3327

Publication Dates

References

Amna, H F.; Samia, A.S.; Yehia, A.B.; Marwa, S.; Elham, M.M.; Mahmoud, A.S. Gold nanoparticles loaded chitosan encapsulate 6-mercaptopurine as a novel nanocomposite for chemo-photothermal therapy on breast cancer. BMC Chemistry 2022, 16(94),1-14. https://doi.org/10.1186/s13065-022-00892-0.

Saeed, R.S. Synthesis and characterization of O-(carboxyl) chitosan Schiff base derivatives and study antibacterial activity, Int J Drug Deliv Technol. 2020, 10 (3), 402- 407. https://doi.org/10.25258/ijddt.10.3.17.

Micaela, T.; Elena,T.; Anna,G.; Rosanna,S.; Carmen,S.; Thomas, H.;Susanne, Z.;Alessandro,G. ; Luca, P.; Maria, B. C.; Angela, D.B.; Patrizia, F. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientifc Reports 2022,12(6613), 1-17, https://doi.org/10.1038/s41598-022-10423-5.

Mohaddeseh, K.; Rezvan, Z.; Azin,K.N.; Reza,M.; Amir, M.M.; Sara, S.; Elham, K.; Nasim, K. Chitosan/polyvinyl alcohol/SiO2 nanocomposite films: Physicochemical and structural characterization. Biointerface Res. Appl. Chem 2022,12(3), 3725-3734. https://doi.org/10.33263/BRIAC123.37253734.

Paula, S.; Ana, P. L.; Giovanna, M.; Declan,M. D.; Janaina, S. C.; Marcelo, G. Synthesis and characterization of silver nanoparticles for the preparation of chitosan pellet and their application in industrial wastewater disinfection. Water 2023, 15(1),190 , https://doi.org/10.3390/w15010190.

Ali, A.T.; Nahida, J.H.; Farah,H.R. Preparation and characterization of (Hyacinth plant / Chitosan) composite as a heavy metal removal. Baghdad Sci. J., 2019, 16(4) ,865-870. https://doi.org/10.21123/bsj.2019.16.4.0865.

Ahmed, A.O.; Gye, H.; Jun, T.K. Antimicrobial, antioxidant, and pH-sensitive polyvinyl alcohol/chitosan-based composite films with aronia extract, cellulose nanocrystals, and grapefruit seed extract . Int J Biol Macromol., 2022 , 213, 381-393. https://doi.org/10.1016/j.ijbiomac.2022.05.180.

Ali, A.T.; Nahida, J. H.; Farah, H. R. Decolorization of phenol red dye by immobilized laccase in chitosan beads using laccase-mediator-system model. Baghdad Sci. J., 2020 17(3), 720-725. https://doi.org/10.21123/bsj.2020.17.3.0720.

Bianca-Elena, B.C.; Loredana,E.N.; Alexandru-Mihail, S.; Alina, G. R.; Florica, D.; Aurica, P.C. New cryogels based on poly(vinyl alcohol) and a copolymacrolactone system: I-synthesis and characterization. Nanomaterials 2022, 12(14),2420, https://doi.org/10.3390/nano12142420.

Hitesh,C.; Shabana, B.; Sandeep,K.; Muhammad, S. K. ; Pradeep, K.; Inderbir, S. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound Healing application. Gels 2022, 8(2) ,111. https://doi.org/10.3390/gels8020111.

Duaa, A.; Nahida, J. H. Preparation and characterization of PANI/PVA blends as electrolyte materials. Journal of Applied Sciences and Nanotechnology 2022, 2(2),38-46. https://doi.org/10.53293/jasn.2022.4124.1073.

Diana, S.; Tăchită ,VB.; Mihaela , D. O.;Florica, D. ; Corneliu , H.; Alina-Mirela , I.; Alexandru, A.; Gabriela, L.; Ion, A.;Ioana, Emilia¸S. ; Vasilica , P. Phosphorylated poly(vinyl alcohol) electrospun mats for protective equipment applications. Nanomaterials 2022,12(15),2685. https://doi.org/10.3390/nano12152685.

Baodong, L.; Jianhua, Z.; Hongge , G. Research progress of polyvinyl alcohol water-resistant film materials. Membranes 2022,12(3),347. https://doi.org/10.3390/membranes12030347.

Hongyu, X.;Ying, S.; Li G.;Nan, S.; Junyan , Y.; Rui, H. Preparation and characterization of PH-responsive polyvinyl alcohol/chitosan/ anthocyanin films , Food Sci. Technol Campinas 2023, 43(e98022),1-12 https://doi.org/10.1590/fst.98022.

Mohamed, A. E.; Taha ,A.H.; Mamdouh, M.S. Polyvinyl alcohol/gum Arabic hydrogel preparation and cytotoxicity for wound healing improvement. e-Polymers 2022,22, 566–576. https://doi.org/10.1515/epoly-2022-0052.

Leandro A. A.; Bruno, V. M. R.; Debora, T. B.; Rafael, S.; Luiza, A. M.; Amanda, F. F.; Adrian, P. Chitosan/gold nanoparticles nanocomposite film for bisphenol A electrochemical sensing . Electrochem 2022, 3, 239-247. https://doi.org/10.3390/electrochem3020016.

Marco, L.M.; Jeanne, P. L.; Lyka, B. D. ; Mikee, J. D. ; Jonathan, N. P.; Ser, J. L.; Susan, D. A.; Jonathan, P. M.; Eleanor, S. A.; Arnold ,C.A.; Custer, C. D.; Rey,Y. C. Preparation of spin-coated poly(vinyl alcohol)/ chitosan/ gold nanoparticles composite and its potential for colorimetric detection of cyanide in water. Pol. J. Environ. Stud., 2022 , 31(2), 1569-1576. https://doi: 10.15244/pjoes/140276.

Zhijun, G.; Dan, S. ; Xian, Z.; Huan, X.; Yizhou, H.; Chenglin, C.; Baolong,S. AuNP/chitosan nanocomposites synthesized through plasma induced liquid chemistry and their applications in photothermal induced bacteria eradication. Pharmaceutics 2022, 14(10), 2147. https://doi.org/10.3390/pharmaceutics14102147.

Amr, H.H.; Amr, M.S.; Omar, M.A.; Salem, S.S. Synthesis of chitosan- based gold nanoparticles : antimicrobial and wound-healing activities, Polymers 2022,14(11), 2293. https://doi.org/10.3390/polym14112293.

Danmin, Y. ; Qun, L.; Yahui, G.; Shoumei, W.; Fanrong, M.; Wuyin, W.; Yucang, Z. Characterization of silver nanoparticles loaded chitosan/polyvinyl alcohol antibacterial films for food packaging. Food Hydrocolloids 2023, 136, Part B, 108305.

https://doi.org/10.1016/j.foodhyd.2022.108305.

Ali, H.S.; Khalid, F.A.; Ruwaidah S.S. Synthesis and characterization of some new thiazine, azetidine and thiazolidine compounds containing 1,3,4- thiadiazole moiety and their antibacterial study, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 2014 ,27 (3),350-364.

https://jih.uobaghdad.edu.iq/index.php/j/article/view/302.

Saeed, R.S.; AL-Rawi, M.S. Synthesis, characterization, study the toxicity and anticancer activity of N,O-Chitosan derivatives. International Journal of Pharmaceutical Research 2020, 12(2), 1197-1206. https://doi.org/10.31838/ijpr/2020.12.02.0180.

Samir, A.H.; Saeed, R.S; Matty, F.S. Synthesis and study of modified polyvinyl alcohol containing amino acid moieties as anticancer agent, Oriental Journal of Chemistry, 2018, 34(1), 286-294. http://dx.doi.org/10.13005/ojc/340131.

Zhimei, Z.; Bayaer, A.; Hui, X.; Shuang, Z. Structure and antimicrobial activities of benzoyl phenyl-thiosemicarbazonechitosans. International Journal of Biological Macromolecules 2012 ,50 ,1169-1174. https://doi.org/10.1016/j.ijbiomac.2012.01.004.

Li, X.; Goh, S.H.; Lai, Y.H.; Wee, A.T. Miscibility of carboxyl-containing polysiloxane/ poly(vinylpyridine) blends. Polymer 2000, 41(17), 6563-6571. https://doi.org/10.1016/S0032-3861(99)00896-4

Hafeez, H.Y.; Lakhera, S.K.; Ashokkumar, M.; Neppolian, B. Ultrasound assisted synthesis of reduced graphene oxide (rGO) supported InVO4-TiO2 nanocomposite for efficient hydrogen production. Ultrason Sonochem. 2019, 53, 1-10. https://doi.org/10.1016/j.ultsonch.2018.12.009.

Badawy, M.E.I.; Rabea, E.I. Preparation and antimicrobial activity of O-(benzoyl) chitosan derivatives against some plant pathogens. African Journal of Microbiology Research 2013, 7(20) , 2259- 2268. https://doi.org/10.5897/AJMR12.1185.

Eva, S.I.; , Maya, P.; Susan, K.B.; Johann, D. Crystal structure of the catalytic portion of human HMG-CoA reductase: insights into regulation of activity and catalysis .The EMBO Journal 2000, 19 (5),819-830. https://doi.org/10.1093/emboj/19.5.819.

Parul, S.; Garima, M.; Navendu, G.; Sanjeev, K.S.; Sanjay, R.D. Evaluating the potential of chitosan/poly(vinyl alcohol) membranes as alternative carrier material for proliferation of Vero cells .e-Polymers 2015, 15(4), 237-243. https://doi.org/10.1515/epoly-2015-0021.

Mohammed, A.A.; Mazin, N.M.; Mohammed, S. Chemical modification and characterization of chitosan for pharmaceutical applications. Egypt. J. Chem. 2021, 64(7), 3635-3649.

https://doi.org/10.21608/ejchem.2021.61809.3331.

Omnia, M.; Abdallah, K. Z.;Mostafa, M. H.; Mervat, I.; Gamal, A. Antibacterial, antibiofilm and cytotoxic activities of biogenic polyvinyl alcohol-silver and chitosan-silver nanocomposites . Journal of Polymer Research 2020, 27(3),74. https://doi.org/10.1007/s10965-020-02050-3.

Amdadul, H.; Ashra, F.; Anowar, K.; Renukadevi, B.; Mizanur, R.; Hyung, K.; Shahina, A. Chitosan-coated polymeric silver and gold nanoparticles: Biosynthesis, characterization and potential antibacterial applications: A Review. Polymers 2022, 14(23),5302.

https://doi.org/10.3390/polym14235302.

Kokila,T.; Chaitany, J. R.; Vanaraj, R.; Selvakumari, U.; Madhappan S.; Vinit, R.; Gopal S. K.;Thi,T.V.; Seong, K. Update on chitosan-based hydrogels: Preparation, characterization, and its antimicrobial and antibiofilm applications. Gels, 2023, 9(1),35. https://doi.org/10.3390/gels9010035.

Nebras M. Jamel, Rajaa K. Baker, Jumbad H. Tomma, Synthesis, characterization and investigation the antibacterial activity of new heterocyclic compounds derived from 4-(4`-methoxy benzoyloxy) benzaldehydethiosemicarbazone, Ibn Al-Haitham Jour. for Pure & Appl. Sci., 2017,30 (1), 155-168. https://jih.uobaghdad.edu.iq/index.php/j/article/view/1068/916.

Saeed, R.S.; Matty, F.S.; Samir, A.H. Al-Rawi, M.S. Synthesis, characterization and antibacterial study of selected metal complexes derived from modified of PVA, Int J Drug Deliv Technol., 2019, 11(02 Suppl.):108-117.

Freshney, RI. Culture of animal cells: A manual of basic technique and specialized applications; Ed.; 6th , Wiley: New York ,2010. https://doi.org/10.1002/9780470649367.

AL-Rawi, M.S.; Hassan, H.A; Hassan, D.F. Synthesis, anti-bacterial and anti-cancer activities of some antipyrine diazenyl benzaldehyde derivatives and antipyrine based heterocycles . Iraqi National Journal of Chemistry 2017, 17 (2),140-148 https://www.iasj.net/iasj/article/186761.

Gao, S.; Ya, BP. ; Dong, WG.; Luo, HS. Ant proliferative effect of octreotide on gastric cancer cells mediated by inhibition of Akt/PKB and telomerase, World J. Gastroenterology 2003, 9 (10) , 2362- 2365. https://doi.org/10.3748/wjg.v9.i10.2362.

Ekaterina,O.M. Gold nanoparticles: Biosynthesis and potential of biomedical application. J. Funct. Biomater 2021,12(4), 70. https://doi.org/10.3390/jfb12040070.

Mohammadreza, A.; Masoumeh, M.C.; Alireza, H.; Negar, F.; Zahra, K.; Parastoo, F.; Fardad, F.; Kasra, M.B.; Hassan, N.; Ebrahim, M. Polyvinyl alcohol (PVA)-based nanoniosome for enhanced in vitro delivery and anticancer activity of thymol, Int J Nanomedicine. 2023, 18,3459-3488. https://doi.org/10.2147%2FIJN.S401725.

Ake-Assi, E.; N’guessan, K.; Kouassi, A.F. Evaluation de la toxicite aigue de l'extrait aqeux des feuilles de thunbergia atacorensis, une espece nouvell. European Scientific Journal, 2015,11 (27), 92- 100. https://eujournal.org/index.php/esj/article/view/6261.