The Continuous Classical Optimal Control Problems for Quaternary Elliptic Partial Differential Equations
DOI:
https://doi.org/10.30526/37.3.3339Keywords:
Quaternary Continuous Classical Optimal Control Vector, Quaternary Linear Partial Differential Equations, Objective functions, Adjoint EquationsAbstract
In this paper, the Quaternary Continuous Classical Optimal Control Problem (QCCOCP) for the Quaternary Linear Elliptic Partial Differential Equations (QLEPDEqs) is studied. The mathematical model for the proposed problem is formulated, and it consists of the QLEPDEqs, the Objective Function (OF), and the set of state controls. The method of Galerkin (MG) is used to prove the existence theorem of a unique state vector solution (QSVS) of the Weak Form (WF) for the QLEPDEqs when the Quaternary Classical Continuous Control Vector (QCCCV) is fixed. Furthermore, the existence of a Quaternary Classical Continuous Optimal Control Vector (QCCOCV) ruled by the QLEPDEqs is stated and proved. The Quaternary Adjoint Equations (QAJEqs) associated with the QLEPDEqs are formulated and then studied. The Fréchet Derivative (FD) for the OF is derived. Finally, the necessary condition theorem (NCTH) for the optimality of the QCCOCP is proved.
References
Cojocaru, M.G.; Jaber, A.S. Optimal Control of a Vaccinating Game Toward Increasing Overall Coverage. J. Appl. Math. phys. 2018, 6,754-769. https://doi.org/ 10.4236/jamp.2018.64067.
Akan, M.; Geçici, E. An application of optimal control in medical systems: optimal investment strategy in doctors. Netw Model Anal Health Inform Bioinforma 2023,12,12.https://doi.org/10.1007/s13721-022-00408-9
Staffetti, E LI X.; Matsuno, Y.; Soler, M. Optimal Control Techniques in Aircraft Guidance and Control. Int. J. Aerosp. Eng. 2019, 2. https://doi.org/10.1155/2019/3026083.
Korsun, O.N.; Sergeev, S.A.; Stulovskii, A.V.Optimal Control Design for Maneuverable Aircraft Using Population-based Algorithms. Procedia Computer Science 2019,150, 361-367. https://doi.org/10.1016/j.procs.2019.02.064.
Syahrini, I.; Masabar, R.; Aliasuddin, A.; Munzir, S.; Hazim, Y. The Application of Optimal Control Through Fiscal Policy on Indonesian Economy. J. Asian Finance Econ. Bus. 2021,8(3),0741-0750. https://ideas.repec.org/a/ers/ijebaa/vixy2021i1p34-51.html.
Sethi, S.; Thompson, G.L. Optimal Control Theory: Applications to Management Science and Economics; Springer, New York 2000; ISBN: 978-0-387-28092-9.
Chhatoi, S.P.; Pierallini, M.; Angelini, F. ;Mastalli, C.; Garabini M . Optimal Control for Articulated Soft Robots', IEEE Transactions on Robotics 2023, 39(5),3671-3685. https://doi.org/10.1109/tro.2023.3288837.
Rigatos, G.; Abbaszadeh, M.; Nonlinear Optimal Control for Multi-DOF Robotic Manipulators with Flexible Joints. . Optim. Control Appl. Methods. 2021, 42(6),1708-1733. https://doi.org/10.1002/oca.2756 .
Soldatenko, S.; Yusupov, R. An Optimal Control Perspective on Weather and Climate Modification. Mathematics 2021, 9(4), 305. https://doi.org/10.3390/math9040305.
Derome, D; Razali, H.; Fazlizan, A.; Jedi, A.; Roberts, A.P. Determination of Optimal Time -Average Wind Speed Data in the Southern Part of Malaysia. Baghdad Sci. J. 2022,19(5),1111-1112. https://doi.org/10.21123/bsj.2022.6472.
Al Basir, F.; Abraha, T. Mathematical Modelling and Optimal Control of Malaria Using Awareness-Based Interventions. Mathematics 2023, 11(7), 1687. https://doi.org/10.3390/math11071687
Chalak, M. Optimal Control for a Dispersing Biological Agent. Journal of Agricultural and Resource Economics 2014, 39(2),271-289. https://doi.org/10.22004/ag.econ.186592.
Longuski J M.; Guzman J. J. Prussing J. Optimal Control with Aerospace Applications. Springer, New York 2014. ISBN: 978-1-4614-8944-3.
Rodrigues, L. Affine Quadratic Optimal Control and Aerospace Applications, in IEEE Transactions on Aerospace and Electronic Systems 2021, 57(2), 795-805, https://doi.org/10.1109/TAES.2020.3029625.
Dineva, A.; Mosavi, A.; Ardabili, S.F.; Vajda, I.; Shamshirband, S.; Rabczuk, T.; Chau, K. Review of Soft Computing Models in Design and Control of Rotating Electrical Machines. Energies 2019, 12, 1049. https://doi.org/10.3390/en12061049.
Dineva, A.; Mosavi, A.; Ardabili, S.F.; Vajda, I.; Shamshirband, S.; Rabczuk, T.; Chau K. Review of Soft Computing Models in Design and Control of Rotating Electrical Machines. Machines. Energies 2019, 12, 1049. https://doi.org/10.3390/en12061049.
18. Alagoz, B.B.; Kaygusuz ,A.; Akcin, M.; Alagoz, S. A Closed-loop Energy price Controlling Method for Real-Time Energy Balancing in a Smart Grid Energy Market. Energy 2013, 59, 95–104. https://doi.org/10.1016/j.energy.2013.06.074.
Rosa, S.; P. Rebelo, P.; Silva, C.N.; Alves, H.; Carvalho, P.G. Optimal control of the customer dynamics based on marketing policy. Applied Mathematics and Computation 2018,42-55. https://doi.org/10.1016/j.amc.2018.02.027.
Koch, C.P; Boscain, U.; Calarco, T. et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol 2022, 9, 19. https://doi.org/10.1140/epjqt/s40507-022-00138-x
Putelat, T. ; Andrew, P. Whitmore, Optimal control of organic matter applications, European Journal of Agronomy 2023,143, 126713. https://doi.org/10.1016/j.eja.2022.126713.
Lin, P.; Wang, W. Optimal Control Problems for Some Ordinary Differential Equations with Behavior of Blowup or Quenching. Math. Control Relat. Fields 2018,8(4)809-828. https://doi.org/10.3934/mcrf.2018036.
Manzoni, A.; Quarteroni, A.; Salsa, S. Optimal Control of Partial Differential Equations: Analysis, Approximation, and Applications (Applied Mathematical Sciences, 207). 1st ed. Springer, New York 2021;ISBN 303077225X.
Chryssoverghi, I.; Al-Hawasy, J. The Continuous Classical Optimal Control Problem of a Semi Linear Parabolic Equations (CCOCP). Journal of Karbala University 2010, 8(3),57-70. https://doi.org/10.23851/mjs.v30i1.464.
Bors, D.; Walczak, S. Optimal control elliptic system with distributed and boundary controls.Nonlinear Analysis 2005, 63,5-7,e1367-e1376. https://doi.org/10.1016/j.na.2005.02.009.
Al-Hawasy, J.; Naeif, A.A. The Continuous Classical Boundary Optimal Control of a Couple Linear of Parabolic Partial Differential Equations. Al-Mustansiriyah Journal of Science 2018, 29(1),118-126. https://doi.org/10.23851/mjs.v29i1.159.
Larsson, S.; Thomee, V. Partial Differential Equations with Numerical Methods; Springer Verlag, New York 2009.
Al-Rawdhance, E.H. The Continuous Classical Optimal Control of Couple Elliptic Partial Differential Equations. Master thesis; Al- Mustansiriyah University 2015.
Al-Hawasy, J. A. A. ; Jaber, M. A. K. The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type. Ibn Al Haitham Journal for Pure and Applied Science 2020, 33(3),113-126. https://doi.org/10.30526/33.1.2379.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms