Study of Irisin in End Stage Renal Disease on Hemodialysis

Main Article Content

Abdullah Ahmed Ali
Noorhan K. Shafeeq

Abstract

Irisin is a myokine that controls energy metabolism by making adipose tissue brown. The present goal in doing this research was to determine how irisin concentration relates to other biochemical markers of disease. Hemodialysis (HD) for chronic kidney failure. The study included 30 individuals with end-stage renal disease on HD and 30 healthy subjects as the control group. The ages of all patients and the control group ranged from (25 to 60) years. The excluded criteria included patients with viral hepatitis and diabetes. Serum irisin concentration and the level of fasting serum glucose (FSG), urea, creatinine (Cr), total protein (TP), albumin (Alb), albumin to creatinine ratio (ACR), total cholesterol (TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), sodium (Na+), potassium (K+), calcium (Ca+2), phosphorus (PO4), and vitamin D were measured. The results showed significantly reduced serum irisin, vitamin D, Na+, K+, Ca+2, PO4, TC, ALT, AST, glomerular filtration rate (eGFR), total protein TP, Alb, ACR, weight, height, and a significantly increased level of urea, Cr, and ALP. in patients compared with the control group. Also, the results showed significant negative correlations between irisin and age, weight, height, FSG, Alb, urea, AST, ALP , ALT, Na, and vitamin D in the HD group. While significant positive correlations were found between irisin and body mass index (Cr, Ca, Po4, Tp, TC, and K),  as well as significant negative correlations between vitamin D and weight (hight, BMI, FSG, Cr, Ca, PO4, TP, Alb, urea, ALP, ALT, and Na), While significant positive correlations were found between vitamin D age, AST, and K, In conclude, it has been found that serum irisin levels and vitamin D levels both fell considerably in uremic patients receiving frequent HD. Irisin has a perfect cut-off value of 78% sensitivity and 99.9% specificity, according to a ROC analysis, suggesting it is a reliable diagnostic marker.

Article Details

How to Cite
[1]
Ahmed Ali, A. and Shafeeq, N.K. 2024. Study of Irisin in End Stage Renal Disease on Hemodialysis. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 327–336. DOI:https://doi.org/10.30526/37.2.3344.
Section
Chemistry

Publication Dates

References

Leustean, L.; Preda, C.;Teodoriu, L.; Mihalache, L.; Arhire, L.; Ungureanu, M. Role of irisin in endocrine and metabolic disorders-possible new therapeutic agent. Applied Sciences 2021, 11(12), 5579. https://doi.org/10.3390/app11125579.

Koeppen, B.; Stanton, B. Renal physiology 5th ed., Elsevier 2015, 18,15-20. https://doi.org/10.1016/C2009-0-62255-8.

Preston, R. ; Wilson ,T. Physiology. Lippincott Williams and Wilkins. Canadian Medical Association Journal 2012, 21, 313-327. https://books.google.iq/books/about/Physiology.html?id=vpFoCWvjr6EC&redir_esc=y.

Garasto, S.; Fusco, S.; Corica, F.; Rosignuolo, M.; Marino, A., Montesanto, A., De Rango, F.; Maggio, A.; Mari, V.; Corsonello, A.; Lattanzio, F. Estimating glomerular filtration rate in older people, BioMed Research International 2014, 2014, 916542. https://doi.org/ 10.1155/2014/916542.

Levin, A.; Hemmelgarn, B.; Culleton, B.; Tobe, Sh.; McFarlane, P.; Ruzicka, M.; Burns, K.; Manns, B.; White, C.; Madore, F.; Moist, F.; Klarenbach, S.; Barrett, B.; Foley, R.; Jindal, K.; Senior, P.; Pannu, N.; Shurraw, S.; Akbari, A.; Cohn, A.; Reslerova, M.; Deved, V.; Mendelssohn, D.; Nesrallah, G.; Kappel, J.; Tonelli, M.; Canadian Society of Nephrology. Guidelines for the management of chronic kidney disease. Canadian Medical Association Journal 2008, 179(11),1154-1162. https://doi.org/10.1503/cmaj.080351.

Ahmed, S.Y.A. ; Albayaty, N.K. A study of hepcidin levels and other biochemical parameters in woman with osteoporosis with type 2 diabetes mellitus. Ibn AL-Haitham Journal For Pure and Applied Sciences 2022, 35(4),183–193. https://doi.org/10.30526/35.4.2867.

Unruh, M.L; Hess, R. Assessment of health-related quality of life among patients with chronic kidney disease. Adv Chronic Kidney 2007, 14(4),345-352. https://doi.org/ 10.1053/j.ackd.2007.07.011.

Beers, M.H.; Porter, R.S.; Jones, T.V.; Kaplan, J.L.; Berkwits, M. Renal replacement therapy. The Merck Manual of Diagnosis and Therapy, 18th ed., Whitehouse Station, NJ: Merck Research Laboratories, 2006; pp.1989-1996.

http://www.mentalhealthpromotion.net/?i=training.en.bibliography.1397.

Tortora GJ; Derrickson, B . The urinary system. In: Principles of Anatomy and Physiology. 11th ed., Hoboken, NJ: John Wiley & Sons. 2006; Ch.14, pp. 992-1035.

Boga, MS.; Sönmez, MG. Long-term renal function following zero ischemia partial nephrectomy, Res Rep Urol. 2019,11,43-52. https://doi.org/ 10.2147/RRU.S174996.

Kasper, D.; Fauci, A.; Hauser, S.; Longo, D.; Jameson, J.; Loscalzo, J. Harrison's principles of internal medicine, New York, NY, USA, Mcgraw-hill 2012, Ch. 1, pp.1813-1814. https://doi.org/10.1001/jama.308.17.1813-b.

Doumas, BT;Watson ,WA; Biggs, HG. Albumin standard and the measurement of serum Albumin with Bromocresol green, Clin Chim Acta. 1971,31,87-96. https://doi.org/10.1016/0009-8981(71)90365-2.

Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia,Clinical chemistry 1962, 8,130-132.‏ https://doi.org/10.1093/clinchem/8.2.130.

Allen, L.C.; Michalko, K. More on cephalosporin interference with creatinine determinations. Clinical Chemistry 1982, 28, 555-556. https://doi.org/10.1093/clinchem/28.3.555.

Massod, M.F. Nonparametric percentile estimates of clinical normal ranges, The American journal of medical technology 1977,43(3),243-252. PMID: 848498.

Nayak, S. Manipal manual of clinical biochemistry. Jaypee Brothers Publishers 2007,15,155.

Bergmeyer, H. U.; Herder, M. International federation of clinical chemistry (IFCC). J. Clin. Chem. Clin. Biochem. 1986, 24(7),497-510. https://doi.org/10.1515/9783110863697-002.

Winn-Deen, E. S.; David, H.; Sigler, G.; Chavez, R. Development of a direct assay for alpha-amylase. Clinical Chemistry 1988, 34(10),2005-2008. https://doi.org/10.1093/clinchem/34.10.2005.

Belfield, A.; Goldberg, D. Colorimetric determination of alkaline phosphatase activity. Enzyme 1971, 12(5), 561-568.

Stove, V.; Slabbinck, A.; Vanoverschelde, L.; Hoste, E.; De Paepe, P.; Delanghe, J. How to solve the underestimated problem of overestimated sodium results in the hypoproteinemic patient. Critical Care Medicine 2016, 44(2),83-88. https://doi.org/10.1097/CCM.0000000000001304.

Thyer, B.A. Bibliography of randomized controlled experiments in social work (1949-2013): Solvitur ambulando, Research on Social Work Practice 2015, 25(7),290. https://doi.org/10.1177/1049731515599174.

Drewes, P.A. Direct colorimetric determination of phosphorus in serum and urine. Clinica Chimica Acta 1972, 39(1),81-88.‏ https://doi.org/10.1016/0009-8981(72)90302-6.

Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Spiegelman, B. M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism 2013, 18(5), 649-659. https://doi.org/10.1016/j.cmet.2013.09.00.

Wang, T.; Bengtsson, G.; Kärnefelt, I.; Björn, L.O. Provitamins and vitamins D2 and D3 in Cladina spp. over a latitudinal gradient: possible correlation with UV levels. Journal of Photochemistry and Photobiology B: Biology 2001, 62(1-2),118-122.‏ https://doi.org/ 10.1016/s1011-1344(01)00160-9.

Weldegiorgis, M. ; Woodward, M. The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: a systematic review and meta-analysis. BMC 2020, 21(1), 506. https://doi.org/10.1186/s12882-020-02151-7.

Pugh, D.; Gallacher, P.J.; Dhaun, N. Management of hypertension in chronic kidney disease. Drugs 2019, 79(4),365–379. https://doi.org/10.1007/s40265-019-1064-1.

Hussein, N.A.; Alaa, T.; Shafeeq, N.K. Determination of Glucagon-Like Peptide-1 and Dipeptidyl Peptidase-4 Levels in Diabetic Nephropathy Patients. Indian Journal of Public Health Research 2019, 10(2),843. https://doi.org/10.5958/0976-5506.2019.00400.5.

Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, Ch.; Wang, A.Y.M.; ter Wee, P.; Franch, H.A. Etiology of the protein-energy wasting syndrome in chronic kidney disease: a consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J Ren Nutr 2013, 23(2),77-90. https://doi.org/ 10.1053/j.jrn.2013.01.001.

Al-Taiee, T.A.K.; Al-Shammaa, N.M.; Aljber, A A. Study of the anti-diuretic hormone (ADH) on end stage renal failure disease (ESRD) pre-hemodialysis in Iraqi patients. Ibn AL-Haitham Journal For Pure and Applied Sciences 2019, 32(2),30–37. https://doi.org/10.30526/32.2.2135.

Ray, L.; Nanda, S.K.; Chatterjee, A.; Sarangi, R.; Ganguly, S. A comparative study of serum aminotransferases in chronic kidney disease with and without end-stage renal disease: Need for new reference ranges. Int J Appl Basic Med Res 2015, 5(1),31. https://doi.org/ 10.4103/2229-516X.149232.

Oyelade, T.; Alqahtani, J.; Canciani, G. Prognosis of COVID-19 in patients with liver and kidney diseases: An early systematic review and meta-analysis. Trop Med Infect Dis 2020, 5(2),80. https://doi.org/10.3390/tropicalmed5020080.

Wu Z, Yang D. A meta-analysis of the impact of COVID-19 on liver dysfunction. Eur J Med Res 2020, 25(54),1-9. https://doi.org/10.1186/s40001-020-00454-x.

Romanelli, F.; Corbo, A.; Salehi, M.; Yadav, M. C.; Salman, S.; Petrosian, D.; Savinova, O.V. Overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells accelerates coronary artery disease in a mouse model of familial hypercholesterolemia. PLOS One 2017, 12(10), e0186426. https://doi.org/10.1371/journal.pone.0186426.

Sciacqua, A.; Tripepi, G.; Perticone, M.;Cassano, V.; Fiorentino, T. V.; Pititto, G. N.; Perticone, F. Alkaline phosphatase affects renal function in never-treated hypertensive patients: Effect modification by age. Sci Rep 2020, 10(1),9748. https://doi.org/10.1038/s41598-020-66911-z.

Farhan, L.O.; Taha, E.M.; Farhan, A.M. A case control study to determine macrophage migration inhibitor, and N-telopeptides of type I bone collagen Levels in the sera of osteoporosis patients. Baghdad Science Journal 2022, 19(4),0848. https://doi.org/10.21123/bsj.2022.19.4.0848.

Dolson, G.M.; Ellis, K.J.; Bernardo, M.V.; Prakash, R.; Adrogué, H. Acute decreases in serum potassium augment blood pressure. Am J Kidney Dis 1995, 26(2),321–326. https://doi.org/ 10.1016/0272-6386(95)90652-5.

Khaled, M.D.; Faiz, A.; Abdelgader, A.T.; Bioprabhu, S.; Elshafie, E.I. Effect of haemodialysis on some metabolic products of ckd patients in Libya. WJPPS 2015,4,45-54. https://storage.googleapis.com/journal-uploads/wjpps/article_issue/1448862833.pdf.

Liu, J.J.; Wong, M.D.; Toy, W.C.; Tan, C.S.; Liu, S.; Ng, X.W.; Lim, S.C . Lower circulating irisin is associated with type 2 diabetes mellitus. J Diabetes Complications 2013, 27(4),365-369. https://doi.org/10.1016/j.jdiacomp.2013.03.002.

Rodríguez-Carmona, A.; Fontán, M.P.; Alvarellos, S.S.; Falcón, T.G.; Bello, M.L P.; Muniz, A.L. Serum levels of the adipomyokine irisin in patients with chronic kidney disease. Nefro 2016, 36(5),496-502. https://doi.org/ 10.1016/j.nefro.2016.05.019.

Christodoulou, M.; Aspray, T.; Schoenmakers, I. Vitamin D supplementation for patients with chronic kidney disease: A systematic review and meta-analyses of trials investigating the response to supplementation and an overview of guidelines, Springer 2021, 109(2),157-178. https://doi.org/ 10.1007/s00223-021-00844-1.

El-Arbagya, A.; El-Zorkanya, K.; Helwab,M.; El-Khalifac, E. Assessment of vitamin D in hemodialysis patients. Menoufia Medical Journal 2020, 33(1),122-126. https://doi:10.4103/mmj.mmj31718.