Statistical Propoerties and Application for [0,1] Truncated Nadarajah-Haghighi Exponential Distribution

Main Article Content

Khalaf H. Al-Habib
Mundher A. Khaleel
Hazem Al-Mofleh

Abstract

There is a desperate need for extended versions of the classical distributions. There have been attempts to find novel families of probability distributions that widen existing families and provide great flexibility in data modeling in a number of application areas, including lifetime analysis, finance, and insurance. In this paper, we introduce a new family of distributions based on [0,1] Truncated and propose a new extension for the exponential distribution. The new distribution is called Truncated Nadarajah-Haghighi Distribution, symbolized with {[0,1]TNHE}. This study aims to derive some statistical properties for the new distribution, such as the quantile function, the mixture representation for the probability density function, the moments, the incomplete moments, the stress strength, the Rényi entropy, and the Shannon entropy. In addition, we estimated the parameters using the maximum likelihood method and proposed the simulation and application of the selected parameters using the statistical software R.

Article Details

How to Cite
[1]
H. Al-Habib , K. et al. 2024. Statistical Propoerties and Application for [0,1] Truncated Nadarajah-Haghighi Exponential Distribution . Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 363–377. DOI:https://doi.org/10.30526/37.2.3349.
Section
Mathematics

Publication Dates

References

Eugene, N; Lee, C; Famoye, F. Beta-normal distribution and its applications Communications in Statistics-Theory and methods 2002, 31(4), 497-512 https://doi.org/10.1081/STA-120003130‏

Cordeiro, G. M; Ortega, E. M; da Cunha, D. C. The exponentiated generalized class of distributions. Journal of data science 2013, 11(1), 1-27.‏ https://doi.org/10.6339/JDS.2013.11%281%29.1086

Bourguignon M; Silva RB; Cordeiro GM. The Weibull-G family of probability distribution. Journal of Data Science 2014, 12(1), 53-68. https://doi.org/10.6339/JDS.2014.12(1).1210

Nofal, Z. M; Afify, A. Z; Yousof, H. M; Cordeiro, G. M. The generalized transmuted-G family of distributions. Communications in Statistics-Theory and Methods 2017, 46(8), 4119-4136. https://doi.org/10.1080/03610926.2015.1078478

Alizadeh, M; Cordeiro, G. M; Pinho, L. G. B; Ghosh, I. The Gompertz-G family of distributions. Journal of statistical theory and practice 2017, 11, 179-207.‏ https://doi.org/10.1080/15598608.2016.1267668

Afify, A. Z; Cordeiro, G. M; Maed, M. E; Alizadeh, M; Al-Mofleh, H; Nofal, Z. M. The generalized odd Lindley-G family: Properties and applications. Anais da Academia Brasileira de Ciências 2019, 91.‏ https://doi.org/10.1590/0001-3765201920180040

Hosseini, B; Afshari, M; Alizadeh, M. The generalized odd gamma-g family of distributions: properties and applications. Austrian Journal of Statistics 2018, 47(2), 69-89. https://doi.org/10.17713/ajs.v47i2.580

Nassar, M; Kumar, D; Dey, S; Cordeiro, G. M; Afify, A. Z. The Marshall–Olkin alpha power family of distributions with applications. Journal of Computational and Applied Mathematics 2019, 351, 41-53. https://doi.org/10.1016/j.cam.2018.10.052

Arshad, R. M. I; Tahir, M. H; Chesneau, C; Jamal, F. The Gamma Kumaraswamy-G family of distributions: theory, inference and applications. Statistics in Transition new series 2020, 21(5), 17-40.‏ https://doi.org/10.21307/stattrans-2020-053

Khaleel, M. A; Oguntunde, P. E; Al Abbasi, J. N; Ibrahim, N. A; AbuJarad, M. H. The Marshall-Olkin Topp Leone-G family of distributions: A family for generalizing. Probability moels. Scientific African 2020, 8, e00470. https://doi.org/10.1016/j.sciaf.2020.e00470

Afify, A. Z; Al-Mofleh, H; Aljohani, H. M; Cordeiro, G. M. The Marshall–Olkin Weibull-H family: estimation, simulations, and applications to COVID-19 data. Journal of King Saud University-Science 2022, 34(5), 102115. https://doi.org/10.1016/j.jksus.2022.102115

Anzagra, L; Sarpong, S; Nasiru, S. Odd Chen-G family of distributions. Annals of Data Science 2022, 9(2), 369-391.‏ https://link.springer.com/article/10.1007/s40745-020-00248-2

Abid, S. H; Kadhim, F. J. [0, 1] truncated inverted Gamma-Inverted gamma distribution. In AIP Conference Proceedings 2022, 2394(1), 070038. http://dx.doi.org/10.1063/5.0121500

Khaleel, M. A; Abdulwahab, A. M; Gaftan, A. M; Abdal-hammed, M. K. A new [0, 1] truncated inverse Weibull rayleigh distribution properties with application to COVID-19. International Journal of Nonlinear Analysis and Applications 2022, 13(1), 2933-2946.‏ https://doi.org/10.22075/ijnaa.2022.6026

Khalaf, A. A; Khaleel, M. A. [0, 1] Truncated exponentiated exponential gompertz distribution: Properties and applications. In AIP Conference Proceedings 2022, 2394(1), 070035. AIP Publishing LLC.‏ http://dx.doi.org/10.1063/5.0121072

Gupta, R. D; Kundu, D. Generalized exponential distribution: different method of estimations. Journal of Statistical Computation and Simulation 2001, 69, 315-337. https://doi.org/10.1080/00949650108812098

Nassar, M; Dey, S; Kumar, D. A new generalization of the exponentiated Pareto distribution with an application. Amer. J. Math. Manag. Sci 2018c, 37, 217-242. http://dx.doi.org/10.1080/01966324.2017.1396942

Bilal, M; Mohsin, M; Aslam, M. Weibull-exponential distribution and its application in monitoring industrial process. Mathematical Problems in Engineering 2021, 1-13.‏ https://doi.org/10.1155/2021/6650237

Nadarajah, S; ; Kotz, S. The beta exponential distribution. Reliability engineering & system safety 2006, 91(6), 689-697.‏ https://doi.org/10.1016/j.ress.2005.05.008

Rasekhi, M; Alizadeh, M; Altun, E; Hamedani, G. G; Afify, A. Z; Ahmad, M. THE MODIFIED EXPONENTIAL DISTRIBUTION WITH APPLICATIONS. Pakistan Journal of Statistics 2017, 33(5).‏

Nadarajah, S; Haghighi, F. An extension of the exponential distribution. Statistics 2011. 45(6), 543-558. https://doi.org/10.1080/02331881003678678

Oguntunde, P. E.; Khaleel, M. A.; Ahmed, M. T.,; Adejumo, A. O., ; Odetunmibi, O. A. A new generalization of the Lomax distribution with increasing, decreasing, and constant failure rate. Modelling and Simulation in Engineering, 2017. https://doi.org/10.1155/2017/6043169

ul Haq, M. A.; Handique, L., ; Chakraborty, S. The odd moment exponential family of distributions: Its properties and applications. International Journal of Applied Mathematics and Statistics, 2018, 57, 47–62.

Goerg, G. M. Lambert W random variables—A new family of generalized skewed distributions with applications to risk estimation. Annals of Applied Statistics, 2011, 5, 2197–2230. https://doi.org/10.48550/arXiv.0912.4554

De Gusmao, F. R.; Ortega, E. M., ; Cordeiro, G. M. The generalized inverse Weibull distribution, Statistical Papers, 2011, 52, 591-619. http://dx.doi.org/10.1007/s00362-009-0271-3

Venegas, O.; Iriarte, Y. A.; Astorga, J. M., ; Gómez, H. W. Lomax-Rayleigh distribution with an application. Appl. Math. Inf. Sci, 2019, 13(5), 741-748.‏ http://dx.doi.org/10.18576/amis/130506

Lai, C. D.; Xie, M., ; Murthy, D. N. P.. A modified Weibull distribution. IEEE Transactions on reliability, 2003, 52(1), 33-37.‏ https://doi.org/10.1109/TR.2002.805788

Khubaz, A. F.; Abdal-Hameed, M. K.; Mohamood, N. H.; Khaleel, M. A. Gompertz Inverse Weibull Distribution, some statistical properties with Application Real Dataset. Tikrit Journal of Administration and Economics Sciences, 2023, 19(Special Issue part 5).‏ http://www.doi.org/10.25130/tjaes.19.SP3.5.11

Teimouri, M.. MPS: an R package for modelling new families of distributions. arXiv preprint arXiv: 2018, 1809.02959.‏ https://doi.org/10.48550/arXiv.1809.02959

Hadi, H. H.; Al-Noor, N. H.Truncated exponential Marshall Olkin Lomax distribution: Properties, entropies, and applications. In AIP Conference Proceedings 2023, 2414(1).AIP Publishing. https://doi.org/10.1063/5.0115489.