The Synergistic Effect of Biosynthesized Copper Oxide Nanoparticles and Vancomycin on Biofilm Formation of Staphylococcus haemolyticus
Main Article Content
Abstract
The results indicated that the biofilm formed by each Staphylococcus haemolyticus isolate was inhibited by 52%–82%. The highest value of biofilm formation (before treatment) was seen in the case of isolate A39, followed by A49 with absorption values of (1.382 and 1.116), respectively. Bacterial cells are capable of catalyzing the biosynthesis process by producing reductive enzymes. These green synthesized inorganic nanoparticles have been frequently investigated as possible bactericidal agents. Our findings revealed that at sub-Minimum Inhibitory Concentration (Sub-MIC), Copper oxide nanoparticles and Vancomycin combinations showed remarkable biofilm inhibitory outcomes in wild-type strains of Staphylococcus haemolyticus that are multidrug resistant. Strong biofilm producer strains were incubated with 100 µl of sub-MIC synergestic nanoparticles for 24 h at 37 ºC; the same strains showed weak biofilm production after incubation. This study was aimed at exploring whether synergistic green synthesized copper oxide nanoparticles and vancomycin combination can function as an anti-biofilm agent against Staphylococcus haemolyticus biofilm
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Saleh, G. M.; Shaymaa S. N. Antibacterial Activity of Silver Nanoparticles Synthesized from Plant Latex. Iraqi Journal of Science, 2020, 1579–88. https://doi.org/10.24996/ijs.2020.61.7.5.
Alao, I.I.; Oyekunle, I.P.; Iwuozor, K.O.; Emenike, E.C. Green Synthesis of Copper Nanoparticles and Investigation of Its Antimicrobial Properties. Advanced Journal of Chemistry-Section B: Natural Products and Medical Chemistry 2022, 4, 39–52. https://doi.org/10.22034/ajcb.2022.323779.1106.
Hasanin, M.; Al Abboud, M.A.; Alawlaqi, M.M.; Abdelghany, T.M.; Hashem, A.H. Ecofriendly Synthesis of Biosynthesized Copper Nanoparticles with Starch-Based Nanocomposite: Antimicrobial, Antioxidant, and Anticancer Activities. Biol. Trace Elem. Res. 2022, 200, 2099–2112. https://doi.org/10.1007/s12011-021-02812-0.
Eltwisy, H.O.; Twisy, H.O.; Hafez, M.H.; Sayed, I.M.; El-Mokhtar, M.A. Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms 2022, 10, 1130. https://doi.org/10.3390/microorganisms10061130.
Cavanagh, J.P.; Pain, M.; Askarian, F.; Bruun, J.-A.; Urbarova, I.; Wai, S.N.; Schmidt, F.; Johannessen, M. Comparative Exoproteome Profiling of an Invasive and a Commensal Staphylococcus haemolyticus Isolate. J. Proteomics 2019, 197, 106–114, doi:10.1016/j.jprot.2018.11.013.
Nandan, P.; Sharan, S. Prospective Observational Research to Determine Antimicrobial Susceptibility and Biofilm Production among Coagulase Negative Staphylococci. International Journal of Pharmaceutical and Clinical Research 2022, 14, 666–671. https://impactfactor.org/PDF/IJPCR/14/IJPCR,Vol14,Issue1,Article99.pdf
Azulay, D.N.; Spaeker, O.; Ghrayeb, M.; Wilsch-Bräuninger, M.; Scoppola, E.; Burghammer, M.; Zizak, I.; Bertinetti, L.; Politi, Y.; Chai, L. Multiscale X-Ray Study of Bacillus subtilis Biofilms Reveals Interlinked Structural Hierarchy and Elemental Heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2118107119. https://doi.org/10.1073/pnas.2118107119.
Rampelotto, R.F.; Lorenzoni, V.V.; Silva, D. da C.; Coelho, S.S.; Wust, V.; Garzon, L.R.; Nunes, M.S.; Meneghetti, B.; Brites, P.C.; Hörner, M.; et al. Assessment of Different Methods for the Detection of Biofilm Production in Coagulase-Negative Staphylococci Isolated from Blood Cultures of Newborns. Rev. Soc. Bras. Med. Trop. 2018, 51, 761–767. https://doi.org/10.1590/0037-8682-0171-2018.
Goetz, C.; Tremblay, Y.D.N.; Lamarche, D.; Blondeau, A.; Gaudreau, A.M.; Labrie, J.; Malouin, F.; Jacques, M. Coagulase-Negative Staphylococci Species Affect Biofilm Formation of Other Coagulase-Negative and Coagulase-Positive Staphylococci. J. Dairy Sci. 2017, 100, 6454–6464. https://doi.org/10.3168/jds.2017-12629.
Suhartono; Hayati, Z.; Mahmuda Distribution of Staphylococcus Haemolyticus as the Most Dominant Species among Staphylococcal Infections at the Zainoel Abidin Hospital in Aceh, Indonesia. Biodiversitas 2019, 20. https://doi.org/10.13057/biodiv/d200739
Haliman, C.C.; Prasetyo, D.S.; Tjampakasari, C.R. Multidrug Resistance and Extensively Drug-Resistance in Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus haemolyticus. Microbiol Indones 2022, 16. https://doi.org/10.7324/JAPS.2022.120601.
Pereira-Ribeiro, P.M.A.; Cabral-Oliveira, G.G.; Olivella, J.G.B.; Motta, I.C. de M.; Ribeiro, F.C.; Nogueira, B.A.; Santos, L.S. dos; Sued-Karam, B.R.; Mattos-Guaraldi, A.L. Biofilm Formation, Multidrug-Resistance and Clinical Infections of Staphylococcus haemolyticus: A Brief Review. Res. Soc. Dev. 2022, 11, e228111133605. https://doi.org/10.33448/rsd-v11i11.33605.
Nakamura, K.; O’Neill, A.M.; Williams, M.R.; Cau, L.; Nakatsuji, T.; Horswill, A.R.; Gallo, R.L. Short Chain Fatty Acids Produced by Cutibacterium Acnes Inhibit Biofilm Formation by Staphylococcus epidermidis. Sci. Rep. 2020, 10, 21237. https://doi.org/10.1038/s41598-020-77790-9.
Schleifer, K.H.; Bell, J.A. Staphylococcus. Bergey’s Manual of Systematics of Archaea and Bacteria. 2015, 1–43.
Shantkriti, S.; Rani, P. Biological Synthesis of Copper Nanoparticles Using Pseudomonas fluorescens. Int J Curr Microbiol App Sci 2014, 3, 374–383. https://www.ijcmas.com/vol-3-9/S.Shantkriti%20and%20P.Rani.pdf
Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x.
Mirzaei, R.; Alikhani, M.Y.; Arciola, C.R.; Sedighi, I.; Irajian, G.; Jamasbi, E.; Yousefimashouf, R.; Bagheri, K.P. Highly Synergistic Effects of Melittin with Vancomycin and Rifampin against Vancomycin and Rifampin Resistant Staphylococcus epidermidis. Front. Microbiol. 2022, 13, 869650. https://doi.org/10.3389/fmicb.2022.869650.
AST 2023 Available online: https://clsi.org/ast-2023/ (accessed on 31 March 2023).
Ben Abdallah, F.; Lagha, R.; Gaber, A. Biofilm Inhibition and Eradication Properties of Medicinal Plant Essential Oils against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Pharmaceuticals (Basel) 2020, 13, 369. https://doi.org/10.3390/ph13110369.
Rima, M.; Trognon, J.; Latapie, L.; Chbani, A.; Roques, C.; El Garah, F. Seaweed Extracts: A Promising Source of Antibiofilm Agents with Distinct Mechanisms of Action against Pseudomonas aeruginosa. Mar. Drugs 2022, 20, 92. https://doi.org/10.3390/md20020092.
Bouchami, O.; Machado, M.; Carriço, J.A.; Melo-Cristino, J.; de Lencastre, H.; Miragaia, M. Spontaneous Genomic Variation as a Survival Strategy of Nosocomial S. haemolyticus. bioRxiv 2022. https://doi.org/10.1101/2022.05.17.492267.
Al-Mousawi, A.H.; Al-Kaabi, S.J.; Mic, S.-.; Mic, S.; Mic, S.; Mic, S.-.; Mic, S.-.; Mic, S.-.; Mic, S.-; Mic, S.-. Effect of Ziziphus Spina Christy on Biofilm Formation of Methicillin Resistance Staphylococcus aureus and Staphylococcus haemolyticus. 2018, 18, 1033–1038. https://doi.org/10.1155/2022/4495688.
Alhusain, M.T.A.; Jaafar, F.N.; Hassan, A.A.A. Isolation and Characterization of Staphylococcus haemolyticus from Urinary Tract Infection. EurAsian Journal of BioSciences 2020, 14, 1909–1913.
Fredheim, E.G.A.; Klingenberg, C.; Rohde, H.; Frankenberger, S.; Gaustad, P.; Flaegstad, T.; Sollid, J.E. Biofilm Formation by Staphylococcus haemolyticus. J. Clin. Microbiol. 2009, 47, 1172–1180. https://doi.org/10.1128/JCM.01891-08.
Silva, P.V.; Cruz, R.S.; Keim, L.S.; Paula, G.R.; Teixeira, B.; Carvalho, F.; Coelho, L.R.; Cícera, M.; Mauricio, J.; Marie, A.; et al. The Antimicrobial Susceptibility. Biofilm formation and genotypic profiles of Staphylococcus haemolyticus from bloodstream infections 2013, 108, 812–816. https://doi.org/10.1590/0074-0276108062013022.
Pinheiro, L.; Ivo, C.; Oliveira, A.; Cataneli, V.; Lourdes, M.; Souza, R. Staphylococcus Epidermidis and Staphylococcus Haemolyticus : Detection of Biofilm Genes and Biofilm Formation in Blood Culture Isolates from Patients in a Brazilian Teaching Hospital. Diagnostic Microbiology and Infectious Disease 2016, 1–4. https://doi.org/0.1016/j.diagmicrobio.2016.06.006.
Silva, V.; Correia, E.; Pereira, J.E.; González-Machado, C.; Capita, R.; Alonso-Calleja, C.; Igrejas, G.; Poeta, P. Exploring the Biofilm Formation Capacity in S. Pseudintermedius and Coagulase-Negative Staphylococci Species. Pathogens 2022, 11. https://doi.org/10.3390/pathogens11060689.
Eid, A.M.; Fouda, A.; Hassan, S.E.; Hamza, -D; Alharbi, M.F.; Elkelish, N.K.; Alharthi, A.; Salem, A. Plant-Based Copper Oxide Nanoparticles; Biosynthesis, Characterization, Antibacterial Activity, Tanning Wastewater Treatment, and Heavy Metals Sorption. 2023, 13. https://doi.org/10.3390/catal13020348.
Kadhim, Z.H.; Ahmed, M.E.; Şimşek, I. The Synergistic Effect of Copper Nanoparticles and Vancomycin in Vitro and in Vivo. Pakistan Journal of Medical and Health Sciences 2022, 16, 594–59. https://doi.org/10.53350/pjmhs22168594.
Rashid, A.E.; Ahmed, M.E.; Hamid, M.K. Evaluation of Antibacterial and Cytotoxicity Properties of Zinc Oxide Nanoparticles Synthesized by Precipitation Method against Methicillin-Resistant Staphylococcus aureus. Int. J. Drug Deliv. Technol. 2022, 12, 985–989. https://doi.org/10.25258/ijddt.12.3.11.
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. Green” Synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. Journal of Nanobiotechnology 2018, 16, 1–24. https://doi.org/10.1186/s12951-018-0408-4.
Raina, S.; Roy, A.; Bharadvaja, N. Degradation of Dyes Using Biologically Synthesized Silver and Copper Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 13, 100278. https://doi.org/10.1016/j.enmm.2019.100278.
Ssekatawa, K.; Byarugaba, D.K.; Angwe, M.K.; Wampande, E.M.; Ejobi, F.; Nxumalo, E.; Maaza, M.; Sackey, J.; Kirabira, J.B. Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front. Bioeng. Biotechnol. 2022, 10, 820218. https://doi.org/10.3389/fbioe.2022.820218.
Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Ullah Khan, A. A Comprehensive Review of Green Synthesis of Copper Oxide Nanoparticles and Their Diverse Biomedical Applications. Inorg. Chem. Commun. 2021, 123, 108369. https://doi.org/10.1016/j.inoche.2020.108369.
Kouhkan, M.; Ahangar, P.; Babaganjeh, L.A.; Allahyari-Devin, M. Biosynthesis of Copper Oxide Nanoparticles Using Lactobacillus casei Subsp. casei and Its Anticancer and Antibacterial Activities. Curr. Nanosci. 2020, 16, 101–111. https://doi.org/10.2174/1573413715666190318155801.
Amaliyah, S.; Pangesti, D.P.; Masruri, M.; Sabarudin, A.; Sumitro, S.B. Green Synthesis and Characterization of Copper Nanoparticles Using Piper Retrofractum Vahl Extract as Bioreductor and Capping Agent. Heliyon 2020, 6, e04636. https://doi.org/10.1016/j.heliyon.2020.e04636.
Ghosh, M.K.; Sahu, S.; Gupta, I.; Ghorai, T.K. Green Synthesis of Copper Nanoparticles from an Extract of Jatropha Curcasleaves: Characterization, Optical Properties, CT-DNA Binding and Photocatalytic Activity. RSC Advances 2020, 10, 22027–22035. DOI: https://doi.org/10.1039/D0RA03186K.
Atiya, M. A.; Hassan, A. K.; Kadhim, F. Q. Green synthesis of copper nanoparticles using tea leaves extract to remove ciprofloxacin (CIP) from aqueous media. Iraqi Journal of Science 2021, 62, 2833–2854. https://doi.org/10.24996/ijs.2021.62.9.1.
Ameh, T.; Zarzosa, K.; Dickinson, J.; Braswell, W.E.; Sayes, C.M. Nanoparticle Surface Stabilizing Agents Influence Antibacterial Action. Front. Microbiol. 2023, 14, 1119550. https://doi.org/10.3389/fmicb.2023.1119550.
Amiri, M.; Etemadifar, Z.; Daneshkazemi, A.; Nateghi, M. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species. J. Dent. Biomater. 2017, 4, 347–352. https://pubmed.ncbi.nlm.nih.gov/28959764/.
Dlamini, N.G.; Basson, A.K.; Pullabhotla, V.S.R. Optimization and Application of Bioflocculant Passivated Copper Nanoparticles in the Wastewater Treatment. Int. J. Environ. Res. Public Health 2019, 16, 2185. https://doi.org/10.3390/ijerph16122185.
Ramzan, M.; Obodo, R.M.; Mukhtar, S.; Ilyas, S.Z.; Aziz, F.; Thovhogi, N. Green Synthesis of Copper Oxide Nanoparticles Using Cedrus Deodara Aqueous Extract for Antibacterial Activity. Mater. Today 2021, 36, 576–581. https://doi.org/10.1016/j.matpr.2020.05.472.
Raju, S.K.; Sekar, P.; Kumar, S.; Sundhararajan, N.; Nagalingam, Y. Green Synthesis and Antimicrobial Evaluation of Copper Oxide Nanoparticles Derived from Aqueous Leaves Extract of Indigofera Cassioides Rottl. Ex. Journal of Xidian University 2023, 17. https://doi.org/10.37896/jxu17.2/012.
Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of Ecofriendly Copper Oxide Nanoparticles for Fabrication over Textile Fabrics: Characterization of Antibacterial Activity and Dye Degradation Potential. J. Photochem. Photobiol. B 2019, 191, 143–149. https://doi.org/10.1016/j.jphotobiol.2018.12.026.
Rajamohan, R.; Raorane, C.J.; Kim, S.-C.; Lee, Y.R. One Pot Synthesis of Copper Oxide Nanoparticles for Efficient Antibacterial Activity. Materials (Basel) 2022, 16, 217. https://doi.org/10.3390/ma16010217.
Qamar, H.; Rehman, S.; Chauhan, D.K.; Tiwari, A.K.; Upmanyu, V. Green Synthesis, Characterization and Antimicrobial Activity of Copper Oxide Nanomaterial Derived from Momordica Charantia. Int. J. Nanomedicine 2020, 15, 2541–2553. https://doi.org/10.2147/IJN.S240232.
Raheem, H.Q.; Al-meamar, T.S.; Almamoori, A.M. Antibiotic Profile And Antibacterial Activity Of Copper Oxide Nanoparticles Against Pseudomonas fluorescens Isolated From Wound Infection. Int. J. Drug Deliv. Technol. 2019, 9. https://doi.org/10.25258/ijddt.v9i3.10.
Mohamed, A.H.; Kadium, S. Biological Effect of Copper Oxide Nanoparticles Synthesized by Saccharomyces boulardii against of Multidrug Resistant Bacteria Isolated from Diabetic Foot Infections. Cardiometry 2022, 25, 31–40. https://doi.org/10.18137/cardiometry.2022.25.3140.
Turner, A.M.; Lee, J.Y.H.; Gorrie, C.L.; Howden, B.P.; Carter, G.P. Genomic Insights into Last-Line Antimicrobial Resistance in Multidrug-Resistant Staphylococcus and Vancomycin-Resistant Enterococcus. Front. Microbiol. 2021, 12, 637656. https://doi.org/10.3389/fmicb.2021.637656.
Hashemifard Dehkordi, P.; Moshtaghi, H.; Abbasvali, M.; Dehkordi, K.R. Effects of Magnesium Oxide and Copper Oxide Nanoparticles on Biofilm Formation of Escherichia coli and Listeria monocytogenes. Nanotechnology 2023, 34. https://doi.org/10.1088/1361-6528/acab6f.
Shehabeldine, A.M.; Amin, B.H.; Hagras, F.A.; Ramadan, A.A.; Kamel, M.R.; Ahmed, M.A.; Atia, K.H.; Salem, S.S. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacterial Cells. Appl. Biochem. Biotechnol. 2023, 195, 467–485. https://doi.org/10.1007/s12010-022-04120-2.
Cherian, T.; Ali, K.; Saquib, Q.; Faisal, M.; Wahab, R.; Musarrat, J. Cymbopogon Citratus Functionalized Green Synthesis of CuO-Nanoparticles: Novel Prospects as Antibacterial and Antibiofilm Agents. Biomolecules 2020, 10, 169. https://doi.org/10.3390/biom10020169.