Antimicrobial Susceptibility of Enterococcus faecium Isolated from Bee-gut on PhzM Gene of Pseudomonas aeruginosa Isolates from Infected Wounds

Authors

DOI:

https://doi.org/10.30526/37.2.3379

Abstract

The aim of this study was to isolate and characterize Fructophilic lactic acid bacteria (FLAB) species from the honeybee gut. Based on the results of this study, it was found that the FLAB species obtained from honey were Gram-positive and catalase-negative, and this identification was confirmed through 16S rRNA gene sequencing. The researchers performed a primary screening to evaluate the effect of the cell-free supernatant (CFS) obtained from Enterococcus faecium (E5), and it was observed that the CFS showed a high inhibition zone of 23 mm against multidrug-resistant Pseudomonas aeruginosa, as determined by the agar well diffusion assay. This study also conducted further investigation to determine the optimal conditions for the production of cell-free supernatant (CFS). The results indicated that yeast extract was the most effective nitrogen source, while glucose was the preferred carbon source for CFS production. The optimal pH for CFS production was 5, and the incubation period of 72 hours was determined to be the most suitable for obtaining a high yield of CFS. Another aspect of the study aimed to identify multidrug-resistant Pseudomonas aeruginosa isolates from burn wound infections. The isolates were identified using the VITEK 2 system, and the presence of the phzM gene was detected in all nine strains. Furthermore, the study evaluated the effect of the cell-free supernatant (CFS) of the selected strain (E5) on the expression of the phzM gene. According to the study, the cell-free supernatant (CFS) significantly decreased the expression of the phzM gene in isolates of multidrug-resistant Pseudomonas aeruginosa. Enterococcus faecium could be a useful antimicrobial agent for treating P. aeruginosa infections that are resistant to multiple drugs.

References

Nowakiewicz, A., Zi´olkowska, G.; Tro´scia´nczyk, A.; Zieba, P.; Gnat, S. Determination of resistance and virulence genes in Enterococcus faecalis and E. faecium strains isolated from poultry and their genotypic characterization by ADSRRS-fingerprinting. Poultry Science, 2016, 96, 986–996. https://doi.org/10.3382/ps/pew365.

Yılmaz, E.S.; Aslanta, O.; Onen, S.P.; Turkyılmaz, S.; Kurekci, C. Prevalence, antimicrobial resistance and virulence traits in enterococci from food of animal origin in Turkey. LWT - Food Science and Technology, 2016, 66, 20–26. https://doi.org/10.1016/j.lwt.2015.10.009.

Leska, A.; Nowak, A.; Motyl, I. Isolation and Some Basic Characteristics of Lactic Acid Bacteria from Honeybee (Apis mellifera L.) Environment A Preliminary Study. Agriculture 2022, 12, 1562. https://doi.org/10.3390/agriculture12101562.

Yaseen, N.N.; Ahmed, D.A. Detection of mexB Multidrug Efflux Gene in Some Local Isolates of Pseudomonas aeruginosa. Iraqi Journal of Science, 2023, 64, 111-118. DOI: https://doi.org/10.24996/ijs.2023.64.1.11.

Qu, J.; Cai, Z.; Liu, Y.; Duan, X.; Han, S.; Liu, J.; Zhu, Y.; Jiang, Z.; Zhang, Y.; Zhuo, C.; Liu, Y.; Liu, Y.; Liu, L.; Yang, L. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Frontiers in Cellular and Infection Microbiology. 2021, 11, 641920. DOI: 10.3389/fcimb.2021.641920.

Shao, X.; Xie, Y.; Zhang, Y.; Liu, J.; Ding, Y.; Wu, M. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opinion on Drug Discovery. 2020, 15, 1403–1423. https://doi.org/10.1080/17460441.2020.1803274.

Gonçalves, T.; Vasconcelos, U. Colour me blue: the history and the biotechnological potential of pyocyanin. Molecules, 2021; 26, 927. doi: 10.3390/molecules26040927.

Carlsson, M.; Shukla, S.; Petersson, A.C. Pseudomonas aeruginosa in cystic fibrosis: pyocyanin negative strains are associated with BPI-ANCA and progressive lung disease. Journal of cystic fibrosis: Official Journal of the European Cystic Fibrosis Society. 2011, 10, 265–271. DOI: 10.1016/j.jcf.2011.03.004.

Al-Ghamdi, A.; Ali Khan, K.; Javed Ansari, M.; Almasaudi, S.; Al-Kahtani, S. Effect of gut bacterial isolates from Apis mellifera jemenitica on Paenibacillus larvae infected bee larvae. Saudi Journal of Biological Sciences, 2018, 25, 383–387. https://doi.org/10.1016/j.sjbs.2017.07.005.

Butler, É.; Oien, R.F.; Lindholm, C.; Olofsson, T.C.; Nilson, B.; Vásquez, A. A pilot study investigating lactic acid bacterial symbionts from the honeybee in inhibiting human chronic wound pathogens. International wound journal., 2016, 13(5), 729-737. DOI: 10.1111/iwj.12360,

Olofsson, T.C.; Vásquez, A. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 2008, 57, 356–363. DOI: 10.1007/s00284-008-9202-0.

Deng, J.; Fu, L.; Wang, R.; Yu, N.; Ding, X.; Jiang, L.; Fand, Y.; Jiang, C.; Lin, L.; Wang, Y.; Che, X. Comparison of MALDI-TOF MS, gene sequencing and the Vitek 2 for identifcation of seventy-three clinical isolates of enteropathogens. Journal of thoracic disease, 2014, 6, 5, 539-544. DOI: 10.3978/j.issn.2072-1439.2014.02.20.

Kowalska, J.D.; Nowak, A.; S´liz˙ ewska, K.; Stan´ czyk, M.; Łukasiak, M.; Dastych, J. Anti-Salmonella Potential of New Lactobacillus Strains with the Application in the Poultry Industry. Polish Journal of Microbiology, 2020, 69, 5–18. DOI: 10.33073/pjm-2020-001.

Hashim, G.M.; Almasaudi, S.B.; Azhar, E.; Al Jaouni, S.K.; Harakeh, S. Biological activity of Cymbopogon schoenanthus essential oil. Saudi Journal of Biological Sciences, 2017, 24, 7, 1458-64. doi: 10.1016/j.sjbs.2016.06.001.

Bayoub, K.; Mardad, I.; Ammar, E.; Serrano, A.; Soukri, A. Isolation and purification of two bacteriocins 3D produced by Enterococcus faecium with inhibitory activity against Listeria monocytogenes. Current Microbiology, 2011, 62, 2, 479-85. DOI: 10.1007/s00284-010-9732-0

MacFaddin, J.F. Biochemical Tests for Identification of Medical Bacteria, (3rd ed.): Williams and Wilkins, Baltimore, USA, 2000.

Ahmed, M.E.; Ahmed, Z.M.; Thamer, A. The Evolutionary Effects Of Bacillin And S-Pyocin Bacteriocin And Their Effects On Propionibacterium acnes and Fungi. Biochem. Cell. Arch., 2022, 20, Supplement 2, 3645-3649.

Tang, H.; Yang, D.; Zhu, L.; Shi, F.; Ye, G.; Guo, H.; Deng, H.; Zhao, L.; Xu, Z.; Li, Y. Paeonol Interferes With Quorum-Sensing in Pseudomonas aeruginosa and Modulates Inflammatory Responses In Vitro and In Vivo. Frontiers in Immunology., 2022,13:896874. DOI: 10.3389/fimmu.2022.896874.

Chakravarty, S.; Melton, C.N.; Bailin, A.; Yahr, T. L.; Anderson, G.G. Pseudomonas Aeruginosa magnesium Transporter Mgte Inhibits Type III Secretion System Gene Expression By Stimulating Rsmyz Transcription. Journal of Bacteriology, 2017, 199, 23, E00268-17. Https://Doi.Org/10.1128/JB.00268-17.

Elzeini, H.M.; Ali, A.A.; Nasr, N.F. Isolation and identification of lactic acid bacteria from intestinal tract of honey bee Apis Mellifera L. in Egypt.

Journal of Apicultural Research, 2020, 59, 1–10. https://doi.org/10.1080/00218839.2020.1746019.

Kim, S-H.; Chon, J.-W.; Jeong, H.-W.; Song, K.-Y.; Kim, D.-H.; Bae, D.; Kim, H.; Seo, K.H. Identification And Phylogenetic Analysis Of Enterococcus Isolates Using Maldi‑Tof Ms And Vitek 2. AMB Express,., 2023, 13, 21. DOI: 10.1186/s13568-023-01525-y.

De Simone, N.; Rocchetti, M.T.; La Gatta, B.; Spano, G.; Drider, D.; Capozzi, V.; Fiocco, D. Antimicrobial Properties, Functional Characterisation and Application of Fructobacillus fructosus and Lactiplantibacillus plantarum Isolated from Artisanal Honey. Probiotics and Antimicrobial Proteins, 2020, 1-18.‏ https://doi.org/10.1007/s12602-022-09988-4.

Ahmed, M.E.; AL-Shimmary, S.M.H. Comparative study between Pure Bacterocin and Vancomycin on Biofilms of MRSA isolated from medical implants. Journal of Pharmaceutical Sciences and Research., 3018, 10, 6, 1476-1480

Saleh, G.M. Isolation And Characterization Of Unique Fructophilic Lactic Acid Bacteria From Different Flower Sources. Iraqi Journal of Agricultural Sciences, 2020, 51, 2, 508-518. DOI: https://doi.org/10.36103/ijas.v51i2.977.

Kasimin, M.E.; Shamsuddin, S.; Molujin, A.M.; Sabullah, MK, Gansau J.A.; Jawan, R. Enterocin: promising biopreservative produced by Enterococcus spp. Microorganisms, 2022, 10, 4, 684. doi: 10.3390/microorganisms10040684.

Phumisantiphong, U.; Siripanichgon, K.; Reamtong, O.; Diraphat P. A novel bacteriocin from Enterococcus faecalis 478 exhibits a potent activity against vancomycin-resistant enterococci. PloS one. 2017, 12, 10, e0186415. DOI: 10.1371/journal.pone.0186415.

Ahmed, M.E. The study of Bacteriocin of Pseudomonas fluorescens and Citrus limon Effects against Propionibacterium acnes and Staphylococcus epidermidis in acne patients. IOP Conference Series: Journal of Physics: Conf. Series, 2018, 1003, 012004. DOI 10.1088/1742-6596/1003/1/012004.

Leska, A.; Nowak, A.; Szulc, J.; Motyl, I.; Czarnecka-Chrebelska, K.H. Antagonistic Activity of Potentially Probiotic Lactic Acid Bacteria against Honeybee (Apis mellifera L.) Pathogens. Pathogens, 2022, 11, 1367. https://doi.org/10.3390/pathogens11111367.

Zhou, H.; Yang, Y.; Shang, W.; Rao, Y.; Chen, J.; Peng, H.; Huang, J.; Hu, Z.; Zhang, R. Rao, X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microbial biotechnology, 2022,15, 1910–1919. doi: 10.1111/1751-7915.14032.

Fadhil, K.H.; Al-Mathkhury, H.J.F. Gentamicin Variably Affects amrZ and rhl gene Expression in Swarmer Cells of Pseudomonas aeruginosa. Iraqi Journal of Science, 2022, 63, 7, 2884-2890. DOI: https://doi.org/10.24996/ijs.2022.63.7.12.

Downloads

Published

20-Apr-2024

Issue

Section

Biology

How to Cite

[1]
Waheed Anwer, A. et al. 2024. Antimicrobial Susceptibility of Enterococcus faecium Isolated from Bee-gut on PhzM Gene of Pseudomonas aeruginosa Isolates from Infected Wounds. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 39–48. DOI:https://doi.org/10.30526/37.2.3379.