Theoretical Study of the Electronic Characteristic of a TiO2 -N719 Dye-Sensitized Solar Cell

Main Article Content

Hadi J.M. Al-Agealy
Hossain Milani Moghaddam
Mudhafar J. Ali

Abstract

     


A theoretical study of electronic characteristics based on charge transfer using quantum model N719 dye-sensitized contact with TiO2 in solar cells. The current density expression used to calculate the photovoltaic characteristics is assumed to be a continuum level of the N719 dye and TiO2 semiconductor in the heterojunction N719-TiO2 devices using the MATLAB program. The transition energy, current, fill factor, and efficiency of N719-TiO2 DSSCs are calculated based on quantum transition theory. The performance of DSSCs photovoltaic was estimated based on the I-V characteristics of the N719-TiO2 device using concentrations  at (100 mW/cm2) irradiation. The N719-TiO2 device with Butanol solvent at a concentration  shows 0.8299 V, and (37.3034 mA/cm2) of open-circuit voltage and short-circuit current respectively fill factor of 0.206 compared to the open circuit of 0.8398 V and (87.5728 mA/cm2) and short-circuit current with fill factor of 0.257 at a concentration of carrier . Current density and fill factor at limited transition energy increase with increasing the coupling constant and concentration of   N719 - TiO2 hetero junction and vice versa.

Article Details

How to Cite
[1]
J.M. Al-Agealy, H. et al. 2024. Theoretical Study of the Electronic Characteristic of a TiO2 -N719 Dye-Sensitized Solar Cell. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 183–192. DOI:https://doi.org/10.30526/37.2.3381.
Section
Physics

Publication Dates

References

Wilson, G. M.; Al-Jassim, M; Metzger, W. K.; Glunz, S. W.; Verlinden, P.; Xiong, G.; Mansfield, L. M.; Stanbery, B. J.; Zhu, K.; Yan, Y.; The photovoltaic technologies roadmap, J. Phys. D Appl. Phys. 2020, 53, 493001. https://doi.org/10.1088/1361-6463%2Fab9c6a

Muhammad, J. Y. U.; Waziri, A. B.; Shitu, A. M.; Ahmad, U. M.; Muhammad, M. H.; Alhaji, Y.; Olaniyi, A. T.; Bala, A. A.; Recent progressive status of materials for solar photovoltaic cell: A comprehensive review. Sci. J. Energy Eng. 2019, 7, 77–89. https://doi.org/10.11648/ J.SJEE.20190704.14

Moorthy, V. M.; Srivastava, V. M.; Device Modelling and Optimization of Nanomaterial-Based Planar Heterojunction Solar Cell (by Varying the Device Dimensions and Material Parameters, Nanomaterials. 2022, 12, 3031. https://doi.org/10.3390/nano12173031

Aga, F. G.; Bakare, F. F.; Dibaba, S. T.; Gelmecha, D. J.; Amente, C.; Investigation of the Impact of Active Layer and Charge Transfer Layer Materials on the Performance of Polymer Solar Cells through Simulation, Advances in Materials Science and Engineering. 2022, 6779260, 7. https://doi.org/10.1155/2022%2F6779260

Naeem, N. A.; Al-Agealy, H. J. M.; Hossain, M. M.; Theoretical Calculation of The Fill Factor of N749/TiO2 Solar Cells, IHJPAS. 2023. 36, 4, 12-23. http://dx.doi.org/10.1063/5.0172672

Seung, M. L.; Juyoung, M.; Uoon, C. B.; Jae, Y. L.; Youngjin, C.; Jung, T. P.; Shape-Controlled TiO2 Nanomaterials-Based Hybrid Solid-State Electrolytes for Solar Energy Conversion with a Mesoporous Carbon Electrocatalyst, Nanomaterials. 2021, 11, 913. https://doi.org/10.1016/ j.jpowsour.2021.230429

Estabraq, H. R.; Hadi, J. M. A.; A Theoretical Investigation of Charge Transfer Dynamics from Sensitized Molecule D35CPDT Dye to SnO2 and TiO2 Semiconductor, IHJPAS. 2022, 53, 3, 23-34. https://doi.org/10.1063/5.0092689

Wang , Q.; Zeng, Z.; Li, Y.; Chen, X.; Efficient strategies for improving the performance of EDOT derivatives and TPA derivatives-based hole transport materials for perovskite solar cells, Solar Energy. 2020, 208, 15 ,10-19. https://doi.org/10.1002/anie.202116068

Hadi, J. M. A.; Alshafaay, B.; Mohsin, A. H.; Ahmed, A.; Abbas, K. S.; Raad, H. M.; Rawnaq, Q. G.; Shatha, H. M.; Theoretical Discussion of Electron Transport Rate Constant TCNQ / Ge and TiO2 System. IOP Conf. Series: Journal of Physics: Conf. Series. 2018, 1003, 012122. http://dx.doi.org/10.1088/1742-6596/1003/1/012122

Li, X.; Zhang, Q.; Yu, J.; Xu, Y.; Zhang, R.; Wang, C.; Zhan, H.; Fabiano, S.; Liu, X.; Hou, J.; Gao, F.; Fahlman, M.; Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nature Communications. 2022, 13, 1, 20-46. https://doi.org/10.1016/j.joule.2020.02.014

Maysari, H. L.; Enhanced performance of dye sensitized solar cells using melinjo peel (Gnetum gnemon) dye as sensitizer, Indonesian PhysicalReview. 2019, 3, 106-115. http://dx.doi.org /10.29303/ipr.v2i3.28

Hadi, J. M.; Khaled, H. H.; Mohsin, A. H.; Rafah, I. N.; Theoretical Study of Charge Transfer in Styryl Thiazilo Quinoxaline Dyes STQ-1, STQ-2,and STQ-3 in Organic Media System. Baghdad Science Journal. 2013, 10 , 4, 214-219. http://dx.doi.org/10.1016/j.egypro.2017.07.116

Hadi, J. M. A.; Hassoni, M. A. H.; Ahmad, M. S.; Noori, R. I.; Jheil, S. S.; Theoretical Study of Charge Transporty at Au/ZnSe and Au/ZnS Interfaces Devices. Ibn AL-Haitham J. Pure and Appl. Sci. 2017, 27, 1, 176–187. http://dx.doi.org/10.1063/5.0129535/16940584/020035

Hadi, J. M. A.; Hassooni, M. A.; Calculate of the Rate Constant of Electron Transfer in TiO2–Safranine DyeSystem, Ibn AL-Haitham J. Pure and Appl. Sci. 2017, 24, 3, 22-34.

Jayachithra, J. V.; Elampari, K.; Meena, M.; Fabrication of TiO2 based Dye-Sensitized Solar Cell using Nerium oleander as a sensitizer, IOP Conf. Series: Materials Science and Engineering. 2022, 1263, 012018. https://doi.org/10.1088/1757-899X%2F1263%2F1%2F012018

Gnida, P.; Jarka, P.; Chulkin, P.; Drygała, A.; Libera, M.; Nsk , T. T.; Schab-Balcerzak, E.; Impact of TiO2 Nanostructures on Dye-Sensitized Solar Cells Performance, Sci. Materials. 2021, 14, 1633. https://doi.org/10.3390/ma14071633

Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F. T.; Vlachopoulos, N.; Zakeeruddin, S. M.; Hagfeldt, A.; ätzel, M. l.; Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells , Nature of science. 2023, 613, 60–65. https://doi.org/10.1038/s41586-022-05460-z

Roya, A.; Mohamed, M. J. S.; Gondalb, M. A.; Mallick, T. K.; Tahira, A. A.; Sundaramd, S.; Co-sensitization effect of N719 dye with Cu doped CdS colloidal nanoparticles for dye-sensitized solar cells,Inorganic Chemistry Communications. Appl. Phys. 2023, 148, 110298. https://doi.org/10.1002/er.4288

Cortez, K. P.; Martínez, A.; Dutt, A.; Santana, G.; N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study, J. Phys. Chem. A. 2019, 123, 51, 10930–1093. https://doi.org/10.1021/acs.jpca.9b09024

Taif, S. A.; Jumali, M. H.; Hadi, J. M.; Abdul Razak, F. B.; Yap, C. C. An Investigation of the Fill Factor and Efficiency of Molecular Semiconductor Solar Cells, Materials Science Forum Submitted. 2021, 1039, 373-381. http://dx.doi.org/10.1140/epjp/s13360-023-03935-0

Taif, S. A.; Hadi, J. M.; Zahraa, H. M.; Bahjat, B. K.; Hiba, A. M.; Charge Transfer from Indoline Dye Contact to Zinc Selenide: Analytical, International Journal of Mechanical Engineering. 2022, 7, 2, 3-12.

Al-Obaidi, S. S.; Hadi, J. M.; Abbas, S. R.; Theoretical Evaluation of Flow Electronic Rate at Au /TFB Interface, Journal of Physics: Conference Series. 2021, 1879 .

Hadi, J. M.; Sarmad, S. A.; Saadi, R. A.; Theoretical Study and Calculation of Electronic Current Flow at Platinum Metal Contact with TFP Molecule Systems, AIP Conference Proceedings. 2022, 2398, 020024. http://dx.doi.org/10.4028/p-8EdAER

Methaq, A. R.; Hadi, J. M.; Theoretical calculation of the electroniccurrent at N3 contact with TiO2 solar celldevices, AIP Conference Proceedings. 2022, 2437, 020060. http://dx.doi.org /10.1063/5.0092690

Derosa, P. A.; Seminario, J. M.; Electron Transport through Single Molecules: Scattering Treatment Using Density Functional and Green Function Theories, J. Phys. Chem. B. 2001, 105, 471-481. https://doi.org/10.1021/JP003033%2B

Methaq, A. R.; Hadi. J. M.; Theoretical investigation of charge transferat N3 sensitized molecule dye contact withTiO2 and ZnO semiconductor, AIP Conference Proceedings. 2022, 2437, 020059 .

Royea, W. J.; Fajardo, A. M.; Lewis, N. S.; Fermi Golden Rule Approach to Evaluating Outer-Sphere Electron-Transfer Rate Constants at Semiconductor/Liquid Interfaces, J. Phys. Chem. B.1997, 101, 11152-11159. https://doi.org/10.1126/science.274.5289.969

Khatibi, A.; Astaraei, F. R.; Ahmadi, M. H.; Generation and combination of the solar cells: A current model review, Energy Sci. Eng. 2019, 23, 1–18. https://doi.org/10.1002/ese3.292

Hadi, J. A.; Mohammad, Z. Fa.; Estimation of the Electric Properties ofAl/Cv System. Journal of University of Babylon for Pure and Applied Sciences. 2020, 12, 33, 184-193. https://doi.org/ 10.1063/1.5132985

Hadi, J. A.; Hassoni, M. A.; Atheoretical study of the effect of the solvent type on the reorganization energies of dye /semiconductor system interface. Ibn-Al Haithem .J for pure & Appl. Sci. 2010 , 23, 3, 51-57. http://dx.doi.org/10.30526/36.4.3382

Abbas, K. S.; Hadi, J. M.; Study of photoemission and electronic properties of dye-sensitized solar cells, Energy Reports. 2020, 6, 3, 28-35. http://dx.doi.org/10.1016/j.egyr.2019.10.015

Haynes, W. M.; Handbook of Chemistry and Physics, First Eds., Imprint CRC Press Publ. 2014.12, 233-245. https://doi.org/10.1201/9781315380476

Lin, Y. J.; Yang, S. H.; Carrier transport and photoresponse for heterojunction diodes based on the reduced graphene oxide-based TiO2 composite and p-type Si . Appl. Phys. A. 2014, 116, 91–95.

Xu, Z.; Wu, J.; Wu, T.; Bao, Q.; He, X.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Tuning the Fermi Level of TiO2 Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells. Energy Technol. 2017, 5, 1820–1826. http://dx.doi.org/10.1007/s40820-023-01087-5

Tahir, M.; Din, I.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Sarker, M. R.; Ali, S.; Ali, S. H.; Kymissis, I.; Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings. 2022, 12, 1163 .

Gnida, P.; Jarka, P.; Chulkin, P.; Drygała, A.; Libera, M.; Tnski, T.; Balcerzak, E. S.; Impact of TiO2 Nanostructures on Dye-Sensitized Solar Cells Performance tert-Butyl alcohol (CH3)3COH. Journal of Materials. 2021, 14, 1633. https://doi.org/10.3390/ma14071633