Spectrophotometric Investigations for Simultaneous Analysis of Certain Antibacterial: A Brief Review

Authors

DOI:

https://doi.org/10.30526/38.2.3385

Keywords:

Antibacterial agents, Levofloxacin, Metronidazole, Rifampicin, Spectrophotometric techniques, Sulfamethoxazole

Abstract

     Antibacterial substances belong to a group of compounds that attack dangerous microorganisms. Therefore, killing bacteria or reducing their metabolic activity will lessen their adverse effects on a biological system. They originated from either synthetic materials, microbes, or mold. Many of these medications treat the gram-negative bacteria from the critical precedence group, such as Pseudomonas, carbapenem-resistant Acinetobacter, and Enterobacterales. This study aims to investigate the simultaneous analysis of specific antibacterial spectrophotometrically. The WHO maintains this list of priority infections with antibiotic resistance. Drug combinations in single dosage forms are becoming increasingly popular in the pharmaceutical industry. This has created a significant issue for pharmaceutical administrators, particularly in combating fake medications and pharmaceutical analysts, and developing reliable and accurate methodologies with minimal overlapping effects on quantification. The basics of several spectrophotometric methods utilized to conduct multi-component analysis are collected in the current work, and the validation criteria that are an essential component of the approaches are also described. Numerous analytical techniques, including high-performance liquid chromatography, electrochemical methods, flow injection techniques, gas chromatography, spectrofluorometric techniques, capillary electrophoresis, and spectrophotometric techniques, have been reported to determine antibacterials. This study conducts a concise narrative evaluation of the many spectrophotometric methods that have been published for the simultaneous investigation of Levofloxacin, Sulfamethoxazole, Metronidazole, and Rifampicin in their pure forms, pharmaceutical dosage forms, and biological samples due to their sensitivity, simplicity, and cost-effectiveness.

Author Biographies

  • Farah Nouri Jasim, Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

  • Nahla A. Alassaf , Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

References

1. Kresge N, Simoni RD, Hill RL. Selman waksman: The father of antibiotics. J Biol Chem. 2004; 279(48):e7. https://doi.org/10.1016/S0021-9258(20)67861-9.

2. Li D, Zhou B, Lv B. Antibacterial therapeutic agents composed of functional biological molecules. J Chem. 2020; 2020(6578579):1-13. https://doi.org/10.1155/2020/6578579

3. Mikhael EM, Hasan MK, Abdulridha SZ. Assessment of antibiotic knowledge among final year pharmacy students at Baghdad University. TOPHJ. 2019; 12(1):379-383. https://doi.org/10.2174/1874944501912010379

4. Miry SM, Al-Hayann HS. Antibacterial and anti-biofilm activities of iraqi propolis extracts against some antibiotic-resistant pathogenic bacteria. Iraqi J Biotechnol. 2022; 21(2):511-521.

5. Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016; 4(2016):90-101.

6. Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010; 1:134. https://doi.org/10.3389/fmicb.2010.00134.

7. Oloke JK. Activity pattern of natural and synthetic antibacterial agents among hospital isolates. Microbios. 2000; 102(403):175-181.

8. Carbon C, Isturiz R. Narrow versus broad spectrum antibacterials: Factors in the selection of pneumococcal resistance to beta‐lactams. Drugs. 2002; 62(9):1289‐1294. https://doi.org/10.2165/00003495-200262090-00001.

9. Newton BA. Mechanisms of antibiotic action. Annu Rev Microbiol. 1965; 19(1):209-240. https://doi.org/10.1146/annurev.mi.19.100165.001233.

10. U.S. Pharmacopeia National Formulary (USP44-NF39), 2021.

11. Bush LM, Chaparro-Rojas F, Okeh V, Etienne J. Cumulative clinical experience from over a decade of use of levofloxacin in urinary tract infections: critical appraisal and role in therapy. Infect Drug Resist. 2011; 4:177-189. https://doi.org/10.2147/IDR.S15610.

12. Anderson VR, Perry CM. Levofloxacin: a review of its use as a high-dose, short-course treatment for bacterial infection. Drugs. 2008; 68(4):535-565. https://doi.org/10.2165/00003495-200868040-00011.

13. British Pharmacopoeia. British Pharmacopoeia. 2022; Vol. 2, p. 302, 820, 1042.

14. Anjana GV. Synthesis and antimicrobial evaluation of deuterated analogues of metronidazole. Iraqi J Pharm Sci. 2022; 31(2):297-303. https://doi.org/10.31351/vol31iss2pp297-303.

15. McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey K W, Gould CV, Kelly C, Loo V, Sammons JS, Sandora TJ, Wilcox MH. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018; 66(7):e1-e48. https://doi.org/10.1093/cid/cix1085.

16. Dingsdag SA, Neil Hunter N. Metronidazole: An update on metabolism, structure–cytotoxicity and resistance mechanisms. J Antimicrob Chemother. 2018; 73(2):265-279. https://doi.org/10.1093/jac/dkx351.

17. Tawgozy F, Qarasnji BK. Molecular analysis of Rifampicin Resistance conferring mutations in mycobacterium tuberculosis. Baghdad Sci J. 2020; 17(2):444-451. https://doi.org/10.21123/bsj.2020.17.2.0444.

18. Al-Rubaye DS, Henihan G, Al-Abasly AKA, Seagar AL, Al-Attraqchi AAF, Schulze H, Hashim DS, Kamil JK, Laurenson IF, Bachmann TT. Genotypic assessment of drug-resistant tuberculosis in Baghdad and other Iraqi provinces using low-cost and low-density DNA microarrays. J Med Microbiol. 2016; 65(2):114-122. https://doi.org/10.1099/jmm.0.000203.

19. Khalil I, Ronn AM, Alifrangis M, Gabar HA, Satti GM, Bygbjerg IC. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole. Am J Trop Med Hyg. 2003; 68(5): 586-589. https://doi.org/10.4269/ajtmh.2003.68.586.

20. Khalaf HS, Al-Haidari AM, Dikran SB, Mohammed AK. Spectrophotometric determination of sulfamethoxazole in pure and pharmaceutical preparations based on condensation reaction method. JUBPAS. 2017; 25(2):515-524.

21. Abrahem S, Abdul kader S, Ibrahim S. Different analytical methods for the determination of metronidazole–A Review. Int J Res Eng Innov. 2020; 4(2):86-90. https://doi.org/10.36037/IJREI.2020.4202.

22. Kotadiya RM, Patel FN. Analytical methods practiced to quantitation of Rifampicin: A captious survey. Curr Pharm Anal. 2021; 17(8):983-999. https://doi.org/10.2174/1573412916999200704144231.

23. Biancolillo A, Marini F. Chemometric methods for spectroscopy-based pharmaceutical analysis. Front Chem. 2018; 6:576. https://doi.org/10.3389/fchem.2018.00576.

24. Gupta D, Bhardwaj S, Sethi S, Pramanik S, Kumar Das D, Kumar R, Pratap Singh P, Kumar Vashistha V. Simultaneous spectrophotometric determination of drug components from their dosage formulations. Spectrochim Acta A Mol Biomol Spectrosc. 2022; 270:120819. https://doi.org/10.1016/j.saa.2021.120819.

25. Skoog DA, Holler FJ, Crouch SR. Principles of Instrumental Analysis; 7th ed., Cengage Learning, U.S, 2018.

26. Sowjanya G, Chandaka PK. Chemometrics approach to drug analysis–An overview. A J Pharm Tech Res. 2019; 9(1):1-13. https://doi.org/10.46624/ajptr.2019.v9.i1.001.

27. Vittal SS, Veeraiah T, Reddy ChVR. Simultaneous spectrophotometric determination of levofloxacin and azithromycin using Π-acceptors as analytical reagents. IOSR J Pharm. 2019; 9(1):50-61. https://doi.org/10.37285/ijpsn.2020.13.5.5.

28. El-Yazbi AF, Khamis EF, Youssef RM, El-Sayed MA, Aboukhalil FM. Green analytical methods for simultaneous determination of compounds having relatively disparate absorbance; application to antibiotic formulation of azithromycin and levofloxacin. Heliyon. 2020; 6(9):e04819. https://doi.org/10.1016/j.heliyon.2020.e04819.

29. Mostafa A. Spectrophotometric and multivariate calibration techniques for simultaneous determination of different drugs in pharmaceutical formulations and human urine: Evaluation of greenness profile. J Anal Methods Chem. 2020; 2020(1):8873003. https://doi.org/10.1155/2020/8873003.

30. Bodhankar V, Thoke ST, Kouthekar VR, Deshmukh SM, Jadhao UT. Simultaneous estimation of ambroxol hydrochloride and levofloxacin hemihydrate using absorbance ratio method. Eur J Pharm Med Res. 2021; 8(3):640-645.

31. Gholse YN, Chaple DR, Kasliwal RH. Development and validation of novel analytical simultaneous estimation based UV spectrophotometric method for Doxycycline and Levofloxacin determination. BRIAC. 2022; 12(4):5458-5478. https://doi.org/10.33263/BRIAC124.54585478.

32. Ravi M, Veeraiah T, Venkata RRCh. Simultaneous spectrophotometric estimation of Levofloxacin and Ornidazole using DDQ and p-CA as analytical reagents. J Pharm Sci & Res. 2022; 14(9):901-907.

33. Khattab FI, Ramadan NK, Hegazy MA, Ghoniem NS. Simultaneous determination of metronidazole and spiramycin in bulk powder and in tablets using different spectrophotometric techniques. Drug Test Anal. 2010; 2(1):37-44.‏ https://doi.org/10.1002/dta.83.

34. Alphonse M. Development and validation of a UV spectrophotometric method for the simultaneous determination of ciprofloxacin hydrochloride and metronidazole in binary mixture. J Chem Pharm Res. 2012; 4(11):4710-4715.

35. Ertokuş GP, Çelik UM. Chemometric analysis of Moxifloxacin and Metronidazole in binary drug combinations with spectrophotometric method. EAJS. 2017; 3(2):30-37.‏

36. Alsamarrai HAJ, Alsamarrai KF. Spectrophotometric determination of Metronidazole and Metronidazole benzoate via first and Second Derivative order spectroscopy. Baghdad Sci J. 2017; 14(2):320-327. https://doi.org/10.21123/bsj.2017.14.2.0320.

37. Hendawy H, Amin AS, Moalla SM, Aish MM. Artificial neural networks for the simultaneous spectrophotometric determination of Amoxicillin Trihydrate, Metronidazole and Pantoprazole in pharmaceutical formulations. Egypt J Chem. 2023; 66(6):119-127. https://doi.org/10.21608/ejchem.2022.151776.6582.

38. Khamar JC, Patel SA. Q-Absorbance ratio spectrophotometric method for the simultaneous estimation of Rifampicin and Piperine in their combined capsule dosage. J Appl Pharm Sci. 2012; 2(4):137-141. https://doi.org/10.7324/JAPS.2012.2416.

39. Stets S, Tavares TM, Peralta-Zamora PG, Pessoab CA, Nagata N. simultaneous determination of Rifampicin and isoniazid in urine and pharmaceutical formulations by multivariate visible spectrophotometry. J Braz Chem Soc. 2013; 24(7):1198-1205. http://dx.doi.org/10.5935/0103-5053.20130154.

40. Tilinca M, Hancu G, Mircia E, Iriminescu D, Rusu A, Vlad RA, Barabás E. Simultaneous determination of isoniazid and rifampicin by UV spectrophotometry. Farmacia. 2017; 65(2):219-224.

41. Khawas S, Parui S, Dey S, Mondal SK, Sarkar S. Simultaneous spectrophotometric estimation of Rifampicin, Isoniazid and Pyrazinamide in their pharmaceutical dosage form. Asian J Research Chem. 2020; 13(2):117-122. https://doi.org/10.5958/0974-4150.2020.00024.3.

42. Bhoyar V, Belgamwar VS, Trivedi S. Simultaneous determination and validation of anti-tubercular drugs in simulated lungs alveolar macrophages fluid by ultraviolet-visible spectrophotometric method. J Appl Spectrosc. 2022; 89(5):892-897.‏ https://doi.org/10.1007/s10812-022-01444-z.

43. Mohamed EM. Simultaneous spectrophotometric determination of Sulfamethoxazole and Trimethoprim in drugs. Anal Lett. 1997; 30(13):2341-2352. https://doi.org/10.1080/00032719708001746.

44. Samar A. Development and validation of new methods for simultaneous spectrophotometric determination of Sulfamethoxazole and Sulfacetamide drugs in their pure forms, Synthetic Samples and Urine, Doctoral dissertation, University of Baghdad, Baghdad, 2014.

45. Rohman A, Silawati D, Sudjadi, Riyanto S. Simultaneous determination of Sulfamethoxazole and Trimethoprim using UV spectroscopy in combination with multivariate calibration. J Med Sci. 2015; 15(4):178-184. https://doi.org/10.3923/jms.2015.178.184.

46. Muchlisyam, Pardede Tr, Satiawan R. Determination of simultaneous Sulfamethoxazole and Trimethoprim by ultraviolet spectrophotometry with mean centering of ratio spectra. Asian J Pharm Clin Res. 2018; 11(1):61. https://doi.org/10.22159/ajpcr.2018.v11s1.26569.

47. Nesmerak K, Kroiherova A, Baptistova A, Hranicek J. Spectrometric determination of trimethoprim and sulfamethoxazole in tablets by automated sequential injection technique. Monatsh Chem. 2020; 151(8):1311-1316. https://doi.org/10.1007/s00706-020-02631-4.

Downloads

Published

20-Apr-2025

Issue

Section

Chemistry

How to Cite

[1]
Jasim, F.N. and Alassaf, N.A. 2025. Spectrophotometric Investigations for Simultaneous Analysis of Certain Antibacterial: A Brief Review. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 204–214. DOI:https://doi.org/10.30526/38.2.3385.