A Study of the Relationship between the Two Types of Crystallite Dislocation Density and the Particle Size of Barium Oxide (BaO) Nanoparticle

Main Article Content

Shefaa S. Abdul-Jabbar
Khalid H. Harbi

Abstract

 


     The research is demonstrating the use of an X-ray diffraction pattern obtained experimentally from barium oxide powder. The X-ray diffraction pattern of the barium oxide nanoparticle sample was analyzed through the program to obtain the mean intensity width values and use these values to extract the particle size for all diffraction pattern lines using the Scherrer method. The nanoparticle size was calculated for each barium oxide line. Then the dislocation density was calculated through two mathematical equations, one of which depended on the particle size and the other depended on the integral breadth, a comparison was made between the results of the two dislocation densities and the particle size, where it was found that the dislocation density is inversely proportional to the particle size for both types, but the values of the dislocation density depend on the strain the retina will be bigger. Also, the relationship between the values of unit cell number and particle size was studied.

Article Details

How to Cite
[1]
S. Abdul-Jabbar, S. and H. Harbi, K. 2024. A Study of the Relationship between the Two Types of Crystallite Dislocation Density and the Particle Size of Barium Oxide (BaO) Nanoparticle. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 193–202. DOI:https://doi.org/10.30526/37.2.3393.
Section
Physics

Publication Dates

References

Dennis, C. B.; Elements of X-ray Diffraction. Addison-Wesley Publishing 1956, 23, 12-23.

‏Bunaciu, A. A.; Udristioiu, E. G.; Aboul-Enein, H. Y.; X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry 2015, 45, 4, 289–299. https://doi.org/10.1080/10408347.2014.949616

GalánLópez, J.; Kestens, L. A.; A multivariate grain size and orientation distribution function: derivation from electron backscatter diffraction data and applications. Journal of Applied Crystallography 2021, 54, 1, 148-162. https://doi.org/10.1107/S1600576720014909

Ihsan, A. A.; Harabbi, K. H.; Restriction of Particle Size and Lattice Strain through X-ray Diffraction Peak Broadening Analysis of ZnO Nanoparticles. Advances in Physics Theories and Applications 2015, 49, 34-45.

Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G.; Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials 2020, 10, 9, 1-21. https://doi.org/10.3390/ma13194380

Warren, B. E.; X‐ray diffraction methods. Journal of applied physics 1941, 12, 5, 375-384.

Whittig, L. D.; Allardice, W. R.; X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 1986, 5, 1, 331-362. https://doi.org/10.1063/1.1712915

Suhir, A. J.; Harbbi, K. H.; A comparative study of Williamson-Hall method and size-strain method through Xray diffraction pattern of cadmium oxide Nanoparticle. AIP Conference Proceedings 2020, 2307, 1, 1-12. https://doi.org/10.1063/5.0033762

Sami, A. M.; Harbbi, K. H.; Analysis the average lattice strain in the crystal direction (hkl) in MgO nanoparticles by using modified Williamson-Hall method. Journal of AIP Conference Proceedings 2022, 2394, 1, 1-12. https://doi.org/10.1063/5.0122941

Hussein, S. K.; Harbbi, K. H.; Analysis of X-ray diffraction lines profile of TiO2 nanoparticles to determine the energy per unit volume and stress by using Halder-Wagner method. Journal of AIP Conference Proceedings 2022, 2386, 1, 1-11.

Yaremiy, I. P.; Bushkova, V. S.; Bushkov, N. I.; Yaremiy, S. I.; X-ray Analysis of NiCrxFe2–xO4 Nanoparticles Using Debye-Scherrer, Williamson-Hall and Size-strain Plot Methods. journal of nano- and electronic physics 2019, 11, 4, 04020-1.04020-8. https://doi.org/10.21272/jnep.11%284%29.04020

Jalil, M. T.; Harbbi, K. H.; Using the Size Strain Plot Method to Specify Lattice Parameters. Ibn Al-Haitham Journal for Pure and Applied Sciences 2023, 36, 1, 123-129.

Obaid, M. A.; Harbbi, K. H.; Abd, A. N.; Preparation and characterization of copper oxide by adding turmeric powder. Ibn Al-Haitham Journal for Pure and Applied Sciences 2021, 36, 1, 1-7. https://doi.org/10.1016/J.POLYMER.2015.07.006

Musa, K. H.; Al- Saadi, T. M.; Investigating the Structural and Magnetic Properties of Nickel Oxide Nanoparticles Prepared by Precipitation Method. Ibn Al-Haitham Journal for Pure and Applied Sciences 2022, 36, 1, 94-103. http://dx.doi.org/10.30526/35.4.2872

Jassim, A. A.; Jassim, W. H.; Preparation of Polyester/ Micro Eggshell Fillers Composite as Natural Surface Coating. Ibn Al-Haitham Journal for Pure and Applied Sciences 2023, 36, 1, 88-99.

Monshi, A.; Foroughi, M. R.; Monshi, M. R.; Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World journal of nanoscience and engineering 2012, 2, 3, 154-160. https://doi.org/10.4236/WJNSE.2012.23020

Bindu, P.; Thomas, S.; Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics 2014, 8, 123-134. https://doi.org/10.1007/S40094-014-0141-9

Abd El Sadek, M. S; Wasly, H. S.; Batoo, K. M.; X-ray peak profile analysis and optical properties of CdS nanoparticles synthesized via the hydrothermal method. Applied Physics 2019, 125, 283, 1-17.

Al-Jubory, A. A.; Study of the effect of copper doping on the structural and optical properties of CdO.7ZnO.3S nanocrystalline thin films prepared by chemical bath deposition. International Journal of Science and Technology 2012, 2, 10, 707-712.

Muniz, F. T. L.; Miranda, M. R.; Morilla dos Santos, C.; Sasaki, J. M.; The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances 2016, 72, 3, 385- 390. https://doi.org/10.1107/S205327331600365X

Gumus, C.; Ozkendi, O. M.; Kava, H.; Ufuktep, Y.; Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method. Journal of optoelectronics and advanced materials 2006, 8, 1, 299-303. https://doi.org/10.1016/j.rinp.2019.02.082

Mohammed, R. A.; Murbat, H. H.; Ahmood, S. I.; Study the Effect of Cold Plasma on the Structure and Surface Properties of PbO Thin Film. International Journal of Science and Research (IJSR) 2017, 69, 7, 240-243.

Prabhu, Y. T.; Rao, K. V.; Kumar, V. S. S.; Kumari, B. S.; X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World Journal of Nano Science and Engineering 2014, 4, 1, 1-8. http://dx.doi.org/10.4236/wjnse.2014.41004

Gonçalves, N. S.; Carvalho, J. A.; Lima, Z. M.; Sasaki, J. M.; Size–strain study of NiO nanoparticles by X-ray powder diffraction line broadening. Materials Letters 2012, 72, 36-38.

Parashar, M.; Shukla, V. K.; Singh, R.; Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics 2020, 31, 5, 3729-3749. https://doi.org/10.1007/s10854-020-02994-8

Rai, R.; Triloki, T.; Singh, B. K.; X-ray diffraction line profile analysis of KBr thin films. Applied Physics A 2016, 122, 1-11. https://doi.org/10.1007/s00339-016-0293-3

Devamani, R. H. P.; Alagar, M.; Synthesis and characterization of Lead (II) Phosphate Nanoparticles. NanoTechnology 2013, 61, 16922-16926. https://doi.org/10.6088/IJASER .0020101078

Abdel Abbas, S. B.; Harbbi, K. H.; Elimination of the broadening in X-ray diffraction lines profile for nanoparticles by using the analysis of diffraction lines method. Journal of AIP Conference Proceedings 2022, 2386, 1, 1-12. https://doi.org/10.1063/5.0067983

Devamani, R. H. P.; Alagar, M.; Synthesis and Characterisation of Copper II Hydroxide Nano Particles. Nano Biomed Eng. 2013, 5, 3, 116-120. https://doi.org/10.6088/IJASER.0020101078

Ansari, M. A.; Jahan N.; Structural and Optical Properties of BaO Nanoparticles Synthesized by Facile Co-precipitation Method. Materials Highlights Journal 2021, 2, 2, 23–28. https://doi.org/10.2991/MATHI.K.210226.001