Synthesis, Characterization of Nickel Cobaltite Nanoparticles  and Its Use in Removal Methyl Green Dye from Aqueous Solution

Main Article Content

Sundus Hadi Merza
Maryam Abdulsatar Abduljabar

Abstract

        In this study, nickel cobaltite (NC) nanoparticles were created using the sol-gel process and used as an adsorbent to adsorb methyl green dye (MG) from aqueous solutions. The adequate preparation of nickel cobaltite nanoparticles was verified using FT-IR, SEM, and X-ray diffraction (XRD) studies. The crystalline particle size of NC nanoparticles was 10.53 nm. The effects of a number of experimental variables, such as temperature, adsorbent dosage, and contact time, were examined. The optimal contact time and adsorbent dosage were 120 minutes and 4.5 mg/L, respectively. Four kinetic models—an intraparticle diffusion, a pseudo-first-order equation, a pseudo-second-order equation, and the Boyd equation—were employed to monitor the adsorption process. Modeling of the experimental data showed that the pseudo-second-order model accurately captured the adsorption kinetics due to the high value of the correlation coefficients (R2). MG dye is gradually adsorbed to the NC nanoparticles through boundary layer diffusion and intraparticle diffusion. The results of the thermodynamic analysis showed that the MG dye adsorption was endothermic and a nonspontaneous phyisorption process.

Article Details

How to Cite
[1]
Merza , S.H. and Abduljabar, M.A. 2024. Synthesis, Characterization of Nickel Cobaltite Nanoparticles  and Its Use in Removal Methyl Green Dye from Aqueous Solution. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 264–278. DOI:https://doi.org/10.30526/37.3.3398.
Section
Chemistry

How to Cite

[1]
Merza , S.H. and Abduljabar, M.A. 2024. Synthesis, Characterization of Nickel Cobaltite Nanoparticles  and Its Use in Removal Methyl Green Dye from Aqueous Solution. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 264–278. DOI:https://doi.org/10.30526/37.3.3398.

Publication Dates

Received

2023-04-11

Accepted

2023-05-23

Published Online First

2024-07-20

References

Hassaan, M.; Nemr, A. El; Hassaan, M.A. Health and Environmental Impacts of Dyes: Mini Review. American Journal of Environmental Science and Engineering. 2017, 1(3), 64–67, doi: https://doi.org/10.11648/j.ajese.20170103.11.

Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering. 2018, 6(4), 4676-4697.

https://doi.org/10.1016/j.jece.2018.06.060

Bae, J.S.; Freeman, H.S. Aquatic Toxicity Evaluation of New Direct Dyes to the Daphnia Magna. Dyes and Pigments. 2007, 73(1), 81–85. doi: https://doi.org/10.1016/j.dyepig.2005.10.015.

Othmani, A.; Kesraoui, A.; Akrout, H.; López-Mesas, M.; Seffen, M.; Valiente, M. Use of Alternating Current for Colored Water Purification by Anodic Oxidation with SS/PbO2 and Pb/PbO2 Electrodes. Environmental Science and Pollution Research. 2019, 26, 25969–25984. doi: https://doi.org/10.1007/s11356-019-05722-w.

Colombo, A.; Módenes, A.N.; Góes Trigueros, D.E.; Giordani da Costa, S.I.; Borba, F.H.; Espinoza-Quiñones, F.R. Treatment of Sanitary Landfill Leachate by the Combination of Photo-Fenton and Biological Processes. Journal of Cleaner Production 2019, 214, 145–153, doi: https://doi.org/10.1016/j.jclepro.2018.12.310.

Louhıchı, G.; Bousselmı, L.; Ghrabı, A.; Khounı, I. Process Optimization via Response Surface Methodology in the Physico-Chemical Treatment of Vegetable Oil Refinery Wastewater. Environmental Science and Pollution Research. 2019, 26, 18993–19011. doi: https://doi.org/10.1007/s11356-018-2657-z.

Cordier, C.; Charpin, L.; Stavrakakis, C.; Papin, M.; Guyomard, K.; Sauvade, P.; Coelho, F.; Moulin, P. Ultrafiltration: A Solution to Recycle the Breeding Waters in Shellfish Production. Aquaculture 2019, 504, 30-38. https://doi.org/10.1016/j.aquaculture.2019.01.045

Alonso, J.J.S.; El Kori, N.; Melián-Martel, N.; Del Río-Gamero, B. Removal of Ciprofloxacin from Seawater by Reverse Osmosis. Journal of Environmental Management. 2018, 217, 337–345. doi: https://doi.org/10.1016/j.jenvman.2018.03.108.

Al-Karawi, A.J.M.; Al-Qaisi, Z.H.J.; Abdullah, H.I.; Al-Mokaram, A.M.A.; Al-Heetimi, D.T.A. Synthesis, Characterization of Acrylamide Grafted Chitosan and Its Use in Removal of Copper(II) Ions from Water. Carbohydrate Polymers. 2011, 83(2), 495–500. doi: https://doi.org/10.1016/j.carbpol.2010.08.017.

Mustafa, H.J.; Al-Saadi, T.M. Study of Pb Ions Removal from Aqueous Solutions by a Novel Sodium Formate-Coated Magnetite Nanoparticles. Journal of Physics: Conference Series. 2021, 1879(3), 032112. doi: https://doi.org/10.1088/1742-6596/1879/3/032112.

Muhi-Alden, Y.Y.; Saleh, K.A. Removing of Methylene Blue Dye from Its Aqueous Solutions Using Polyacrylonitrile/Iron Oxide/Graphene Oxide. Iraqi Journal Science. 2022, 63, 2320–2330. doi: https://doi.org/10.24996/ijs.2022.63.6.1.

Zhang, X.; Zhang, P.; Wu, Z.; Zhang, L.; Zeng, G.; Zhou, C. Adsorption of Methylene Blue onto Humic Acid-Coated Fe3O4 Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2013, 435, 85–90. doi:https://doi.org/10.1016/j.colsurfa.2012.12.056.

Tan, K. B.; Vakili, M.; Horri, B. A.; Poh, P. E.; Abdullah, A. Z.; Salamatinia, B. Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Separation and purification technology, 2015, 150, 229-242. https://doi.org/10.1016/j.seppur.2015.07.00914.

Chaba, J.M.; Nomngongo, P.N. Effective Adsorptive Removal of Amoxicillin from Aqueous Solutions and Wastewater Samples Using Zinc Oxide Coated Carbon Nanofiber Composite. Emerging Contaminants. 2019, 5, 143–149. doi: https://doi.org/10.1016/j.emcon.2019.04.001.

Li, J.; Xiong, S.; Liu, Y.; Ju, Z.; Qian, Y. High Electrochemical Performance of Monodisperse NiCo2O 4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries. ACS applied materials & interfaces 2013, 5(3), 981–988. doi:https://doi.org/10.1021/am3026294.

Wu, X.; Wang, W.; Li, F.; Khaimanov, S.; Tsidaeva, N.; Lahoubi, M. PEG-Assisted Hydrothermal Synthesis of CoFe 2 O 4 Nanoparticles with Enhanced Selective Adsorption Properties for Different Dyes. Applied surface science. 2016, 389, 1003–1011. https://doi.org/10.1016/j.apsusc.2016.08.053.

Nezamzadeh-Ejhieh, A.; Shams-Ghahfarokhi, Z. Photodegradation of Methyl Green by Nickel-Dimethylglyoxime/ZSM-5 Zeolite as a Heterogeneous Catalyst. Journal of Chemistry. 2013, 2013(1), 104093. doi: https://doi.org/10.1155/2013/104093.

Imranullah, M.; Hussain, T.; Ahmad, R.; Hwang, J.S.; Ahmad, S.; Shakir, I.; Kang, D.J. Hierarchical Porous Spinel Nickel Cobaltite Nanoflakes Anchored Reduced Graphene Oxide Nano-Photocatalyst for Efficient Degradation of Organic Pollutants under Natural Sunlight. Journal of Materials Research and Technology. 2021, 15, 623–632. doi: https://doi.org/10.1016/j.jmrt.2021.08.030.

Faisal, A.A.H.; Abdul-Kareem, M.B.; Mohammed, A.K.; Ghfar, A.A. Novel Sorbent of Sand Coated with Humic Acid-Iron Oxide Nanoparticles for Elimination of Copper and Cadmium Ions from Contaminated Water. Journal of Polymers and the Environment. 2021, 29, 3618–3635. doi: https://doi.org/10.1007/s10924-021-02132-3.

Zhai, Y.; Mao, H.; Liu, P.; Ren, X.; Xu, L.; Qian, Y. Facile Fabrication of Hierarchical Porous Rose-like NiCo2O4 Nanoflake/MnCo2O4 Nanoparticle Composites with Enhanced Electrochemical Performance for Energy Storage. Journal of Materials Chemistry A 2015, 3(31), 16142–16149. doi: https://doi.org/10.1039/c5ta03017j.

Haripriya, M.; Sivasubramanian, R.; Ashok, A.M.; Hussain, S.; Amarendra, G. Hydrothermal Synthesis of NiCo 2 O 4 –NiO Nanorods for High Performance Supercapacitors. Journal of Materials Science: Materials in Electronics. 2019,30, 7497-7506. https://doi.org/10.1007/s10854-019-01063-z.

Liu, M.-C.; Kong, L.-B.; Lu, C.; Li, X.-M.; Luo, Y.-C.; Kang, L.; Li, X.; Walsh, F.C. A Sol-Gel Process for the Synthesis of NiCo 2 O 4 Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors. Journal of The Electrochemical Society. 2012, 159(8), A1262–A1266 doi: https://doi.org/10.1149/2.057208jes.

Khalid, S.; Cao, C.; Wang, L.; Zhu, Y. Microwave Assisted Synthesis of Porous NiCo2O4 Microspheres: Application as High Performance Asymmetric and Symmetric Supercapacitors with Large Areal Capacitance. Scientific Reports. 2016, 6(1). doi: https://doi.org/10.1038/srep22699.

Tian, Y.; Li, H.; Ruan, Z.; Cui, G.; Yan, S. Synthesis of NiCo 2 O 4 Nanostructures with Different Morphologies for the Removal of Methyl Orange. Applied Surface Science. 2017, 393, 434–440. doi: https://doi.org/10.1016/j.apsusc.2016.10.053.

Guan, X.; Luo, P.; Yu, Y.; Li, X.; Chen, D. Solvent-Tuned Synthesis of Mesoporous Nickel Cobaltite Nanostructures and Their Catalytic Properties. Applied Sciences. 2019, 9(6), 1100 doi: https://doi.org/10.3390/app9061100.

Adeyemo, A.A.; Adeoye, I.O.; Bello, O.S. Adsorption of Dyes Using Different Types of Clay: A Review. Applied Water Science. 2017, 7, 543–568. doi: https://doi.org/10.1007/s13201-015-0322-y.

Khudhaier, S.R.; Awad, A.A.; Al-Heetimi, D.T.A.; Al-Karawi, A.J.M.; Al-Kinani, E.M.; Omarali, A.A.B.; Al-Qaisi, Z.H.J.; Khalaf, Q.Z. Synthesis of Chitosan–Iron Keplerate Composite as an Adsorbent for Removal of Toxic Ions from Water. Desalin. Water Treat. 2019, 157, 165–176, doi: https://doi.org/10.5004/dwt.2019.24157.

Atiya, M.A.; Hassan, A.K.; Kadhim, F.Q. Green Synthesis of Copper Nanoparticles Using Tea Leaves Extract to Remove Ciprofloxacin (CIP) from Aqueous Media. Iraqi Journal Science. 2021, 62, 2833–2854, doi: https://doi.org/10.24996/ijs.2021.62.9.1.

Abbas, A.M.; Merza, S.H. Preparation and Characterization of Graphene Oxide - Attapulgite Composite and Its Use in Kinetic Study of Alizarin Dye Adsorption from Aqueous Media. Egyptian Journal of Chemistry. 2020, 63(2), 561–572, doi: https://doi.org/10.21608/ejchem.2019.15600.1946.

Bahgat, M.; Farghali, A.A.; El Rouby, W.; Khedr, M.; Mohassab-Ahmed, M.Y. Adsorption of Methyl Green Dye onto Multi-Walled Carbon Nanotubes Decorated with Ni Nanoferrite. Applied Nanoscience. 2013, 3, 251–261. doi: https://doi.org/10.1007/s13204-012-0127-3.

Farghali, A.A.; Bahgat, M.; El Rouby, W.M.A.; Khedr, M.H. Preparation, Decoration and Characterization of Graphene Sheets for Methyl Green Adsorption. Journal of Alloys and Compounds. 2013, 555, 193–200. doi: https://doi.org/10.1016/j.jallcom.2012.11.190.

Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. Journal of Hazardous materials. 2020, 390, 122156. https://doi.org/10.1016/j.jhazmat.2020.122156.

Pholosi, A.; Naidoo, E.B.; Ofomaja, A.E. Intraparticle Diffusion of Cr(VI) through Biomass and Magnetite Coated Biomass: A Comparative Kinetic and Diffusion Study. South African Journal of Chemical Engineering. 2020, 32(1), 39–55. doi: https://doi.org/10.1016/j.sajce.2020.01.005.

Beyond, G.; Adamson, A.; Myers, L. The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. 11. Kinetics. In Chemical Engineering Journal, 1947, 69, 2836–1948 ISBN 1385-8947. https://doi.org/10.1021/ja01203a066

Karaoǧlu, M.H.; Zor, Ş.; Uǧurlu, M. Biosorption of Cr(III) from Solutions Using Vineyard Pruning Waste. Chemical Engineering Journal. 2010, 159(1-3), 98–106. doi: https://doi.org/10.1016/j.cej.2010.02.047.

Abbas, A.M.; Abd, S.S.; Himdan, T. abdulhadi Kinetic Study of Methyl Green Dye Adsorption from Aqueous Solution by Bauxite Clay at Different Temperatures. Ibn AL-Haitham Journal For Pure and Applied Science. 2018, 3(1)1, 58–66. doi: https://doi.org/10.30526/31.1.1853.

Bengar, S.A.; Zanjanchi, M.A.; Sohrabnezhad, S. Adsorptive Characteristics and Performance of Template-Containing Mcm-41 for Removal of Sodium Dodecylbenzene Sulfonate from Aqueous Solutions. Desalination and Water Treatment. 2021, 212, 415–427. doi: https://doi.org/10.5004/dwt.2021.26601.

Mohammed, F.F. Equilibrium; Kinetic, ; Thermodynamic Study of Removing Methyl Orange Dye from Aqueous Solution Using Zizphus Spina-Christi Leaf Powder. Baghdad Science Journal. 2022, 20(2), 0296-0296 doi: https://doi.org/10.21123/bsj.2022.7036.