Evaluation of GRHPR Enzyme and some Biochemical Variables in Patients with Calcium Oxalate Kidney Stone Disease

Main Article Content

Duha Abed Almuhssen Alzubaidy
https://orcid.org/0009-0005-4017-3170
Luma Hassan Alwan Al Obaidy
https://orcid.org/0000-0002-7649-4516

Abstract

Kidney stone disease is a highly significant clinical issue that poses a serious threat to both global health and the economy. For the sustainability of good health and well-being of kidney stone patients, this study aimed to elucidate the role of the enzyme glyoxylate reductase and hydroxypyruvate reductase (GRHPR) in the formation of the kidney stones and their development. There are many different types of kidney stones, but calcium oxalate kidney stones are the most prevalent in Iraq. In this study, 50 Iraqi patients with calcium oxalate stones (25 males and 25 females) were compared to 30 healthy control groups (17 males and 13 females). The biochemical tests for kidney function, such as serum urea, creatinine, and uric acid, were detected in the sera of both study groups. In addition to fasting blood sugar (FBS), Ca++, Na+, complete blood count (CBC) and blood group tests, Urine was collected for General Urine Examination (GUE), to visualize oxalate crystals in the patient’s urine. Also, the relationship between the concentration of the enzymes glyoxylate reductase and hydroxypyruvate reductase (GRHPR) and the development of calcium oxalate kidney stones in Iraqi patients and the control group was examined. It was found that the enzyme concentrations in the control group were (4.78 ± 1.06 mg/dl) significantly higher than the enzyme concentration in the patients group  (0.411 ± 0.02 mg/dl). Also, it was found ,  that the uric acid  concentrations were within the normal range for both groups, but urea and creatinine were significantly higher in kidney stone  patients, while they were at the normal ranges in the control group.

Article Details

How to Cite
Evaluation of GRHPR Enzyme and some Biochemical Variables in Patients with Calcium Oxalate Kidney Stone Disease. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(2), 158-168. https://doi.org/10.30526/37.2.3400
Section
Biology

How to Cite

Evaluation of GRHPR Enzyme and some Biochemical Variables in Patients with Calcium Oxalate Kidney Stone Disease. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(2), 158-168. https://doi.org/10.30526/37.2.3400

Publication Dates

References

1. Singh, P.; Harris, P.C.; Sas, D.J.; Lieske, J.C. The genetics of kidney stone disease and nephrocalcinosis. Nature Reviews Nephrology. 2022, 18, 224–40. https://doi.org/10.3390/healthcare11030424

Dobrek, Ł. Kidney Stone Disease With Special Regard To Drug-Induced Kidney Stones–A Contemporary Synopsis. Wiadomości Lekarskie. 2020, 73, 2031-2039. https://doi.org/10.36740/WLek202009226

Alelign, T.; Petros, B. Kidney Stone Disease: An Update on Current Concepts. Advances in Urology. 2018, 1-12. https://doi.org/10.1155/2018/3068365

Rukin, N.J.; Siddiqui, Z.A.; Chedgy, E.C.; Somani, B.K. Trends in upper tract stone disease in England: evidence from the hospital episodes statistics database. Urologia Internationalis. 2017, 98, 391-396. https://doi.org/10.1159/000449510

Moftakhar, L.; Jafari, F.; Ghoddusi Johari, M.; Rezaeianzadeh, R.; Hosseini, S.V.; Rezaianzadeh, A. Prevalence and risk factors of kidney stone disease in population aged 40–70 years old in Kharameh cohort study: a cross-sectional population-based study in southern Iran. BMC urology, 2022, 22, 1-9. https://doi.org/10.1186/s12894-022-01161-x

Zahirian Moghadam, T.; Pourfarzi, F.; Mohseni Rad, H.; Zandian, H. Kidney stones among Iranian adults: Prevalence and socioeconomic inequality assessment in a cohort‐based cross‐sectional study. Health Science Reports, 2022, 5, e877. https://doi.org/10.1002/hsr2.877

Littlejohns, T. J.; Neal, N. L.; Bradbury, K. E.; Heers, H.; Allen, N. E.; Turney, B. W. Fluid intake and dietary factors and the risk of incident kidney stones in UK Biobank: a population-based prospective cohort study. European Urology Focus, 2022, 6, 752-761. https://doi.org/10.1016/j.euf.2019.05.002

Song, S.; Thomas, I.C.; Ganesan, C.; Velaer, K.N.; Chertow, G.M.,; Pao, A.C.; Leppert, J.T. Twenty-four-hour urine testing and urinary stone disease recurrence in veterans. Urology, 2022, 159, 33-40. https://doi.org/10.1016/j.urology.2021.10.005

Lin, B.B.; Lin, M.E.; Huang, R.H.; Hong, Y.K.; Lin, B.L.; He, X.J. Dietary and lifestyle factors for primary prevention of nephrolithiasis: a systematic review and meta-analysis. BMC nephrology, 2022, 21, 1-13. https://doi.org/10.1186/s12882-020-01925-3

Liu, Y.; Chen, Y.; Liao, B.; Luo, D.; Wang, K.; Li, H.; Zeng, G. Epidemiology of urolithiasis in Asia. Asian Journal of Urology, 2018, 5, 205-214. https://doi.org/10.1016/j.ajur.2018.08.007

Wu, W.; Yang, D.; Tiselius, H.G.; Ou, L.; Liang, Y.; Zhu, H.; Li, S.; Zeng, G. The characteristics of the stone and urine composition in Chinese stone formers: primary report of a single-center results. Urology, 2014, 83, 732-737. https://doi.org/10.1016/j.urology.2013.11.012

Abood, S.J.; Al Hayawi, A.Y. Detection of AGTX gene mutations of kidney stone patients in Tikrit city, Iraq. Annals of Tropical Medicine and Public Health, 2019, 22. http://doi.org/10.36295/ASRO.2019.22067

Esmail, A.O.; Qadir, B. A.; Hamad, H. Q. Effect of Drinking Water Hardness on Kidney Stones Formation in Ranya District. Cihan University-Erbil Scientific Journal, 2022, 4, 1-6. http://doi.org/10.24086/cuesj.v4n1y2020.pp1-6

Khalili, P.; Jamali, Z.; Sadeghi, T.; Esmaeili-Nadimi, A.; Mohamadi, M.; Moghadam-Ahmadi, A.; Ayoobi, F.; Nazari, A. Risk factors of kidney stone disease: a cross-sectional study in the southeast of Iran. BMC urology, 2021, 21, 1-8. https://doi.org/10.1186/s12894-021-00905-5

Shahidi, S.; Dolatkhah, S.; Mortazavi, M.; Atapour, A.; Aghaaliakbari, F.; Meamar, R.; Badri, M. Taheri, D. An epidemiological survey on kidney stones and related risk factors in the iranian community. Acta Medica Iranica, 2022, 60, 307. https://doi.org/10.18502/acta.v60i5.9558

DiBianco, J. M.; Jarrett, T. W.; Mufarrij, P. Metabolic syndrome and nephrolithiasis risk: should the medical management of nephrolithiasis include the treatment of metabolic syndrome? Reviews in Urology, 2015, 17, 117. https://doi.org/10.3909/riu0650]

Baatiah, N.Y.; Alhazmi, R.B.; Albathi, F.A.; Albogami, E.G.; Mohammedkhalil, A.K.; Alsaywid, B.S. Urolithiasis: Prevalence, risk factors, and public awareness regarding dietary and lifestyle habits in Jeddah, Saudi Arabia in 2017. Urology Annals, 2020, 12, 57. https://doi.org/10.4103/UA.UA_13_19

Curhan, G. C. Epidemiology of stone disease. Urologic Clinics of North America, 2007, 34, 287-293. https://doi.org/10.1016/j.ucl.2007.04.003

Mehrsai, A.; Naeini, H.E.; Tehrani, D.F.; Jalayani, K.N. Impact of Bone Mineral Density on the Recurrent Urolithiasis. Translational Research in Urology. 2019, 12–16. https://doi.org/10.22034/au.2020.227228.1014.

Espinosa-Ortiz, E.J.; Eisner, B.; H.; Lange, D.; Gerlach, R. Current insights into the mechanisms and management of infection stones. Nature Reviews Urology, 2019, 16, 35-53. https://doi.org/10.1038/s41585-018-0120-z

Daudon, M.; Petay, M.; Vimont, S.; Deniset, A.; Tielens, F.; Haymann, J.P.; Letavernier, E.; Frochot, V.; Bazin, D. Urinary tract infection inducing stones: Some clinical and chemical data. Comptes Rendus. Chimie, 2022, 25, 315-334. https://doi.org/10.5802/crchim.159

Al-Khamesi, M.B.; Al-Sibahi,Z.N.; Al-Obaidy,L. H.A.; Hilal, A.H. Studying of Kidney, Liver Functions and Some Blood Ions In Toxoplasmosis Patients. Al-Mustansiriyah Journal of Science, 2016, 27, 1, 43-46.

Tanikawa, C.; Kamatani, Y.; Terao, C.; Usami, M.; Takahashi, A.; Momozawa, Y.; Suzuki, K.; Ogishima, S.; Shimizu, A.; Satoh, M.; Matsuda, K. Novel risk loci identified in a genome-wide association study of urolithiasis in a Japanese population. Journal of the American Society of Nephrology, 2019, 30, 855-864. https://doi.org/10.1681/ASN.2018090942

Shah, R.J.; Vaughan, L.E.; Enders, F.T.; Milliner, D.S.; Lieske, J.C. Plasma oxalate as a predictor of kidney function decline in a primary hyperoxaluria cohort. International Journal of Molecular Sciences, 2020, 21, 3608. https://doi.org/10.3390/ijms21103608

Harambat, J.; Fargue, S.; Bacchetta, J.; Acquaviva, C.; Cochat, P. Primary hyperoxaluria. International Journal of Nephrology, 2011, 2011. https://doi.org/10.4061/2011/864580

Takayama, T.; Nagata, M.; Ozono, S.; Nonomura, K.; Cramer, S. D. A novel mutation in the GRHPR gene in a Japanese patient with primary hyperoxaluria type 2. Nephrology Dialysis Transplantation, 2007, 22, 2371-2374. https://doi.org/10.1093/ndt/gfm271

Rumsby, G.; Cregeen, D.P. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1999, 1446, 383-388. https://doi.org/10.1016/S0167-4781(99)00105-0

Garrelfs, S.F.; Rumsby, G.; Peters-Sengers, H.; Erger, F.; Groothoff, J.W.; Beck, B.B.; Oosterveld, M.J.; Pelle, A.; Neuhaus, T.; Adams, B.; Cochat, P. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney International, 2019, 96, 6, 1389-1399. https://doi.org/10.1016/j.kint.2019.08.018

Forbes, T.A.; Brown, B.D.; Lai, C., Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. British Journal of Clinical Pharmacology, 2022, 88, 6, 2525-2538. https://doi.org/10.1111/bcp.14925

Wang, J.; Wang, Y.; Xing, P.; Liu, Q.; Zhang, C.; Sui, Y.; Wu, C. Development and validation of a hypoxia‑related prognostic signature for breast cancer. Oncology Letters, 2020, 20, 1906-1914. https://doi.org/10.3892/ol.2020.11733

Yang, S.; Liu, Y.; Zhang, B.; Li, J.; Xu, F.; Yu, M.; Chen, Y. Li, C. Liu, T. Zhang, J. GRHPR, targeted by miR-138-5p, inhibits the proliferation and metastasis of hepatocellular carcinoma through PI3K/AKT signaling pathway. 2022. https://doi.org/10.21203/rs.3.rs-2015954/v1

Inserra, A.; Campanale, A.; Cheishvili, D.; Dymov, S.; Wong, A.; Marcal, N.; Gobbi, G.; Syme, R.A.; Taylor, L.; De Gregorio, D.; Kennedy, T.E.; Szyf, M. Modulation of DNA methylation and protein expression in the prefrontal cortex by repeated administration of D-lysergic acid diethylamide (LSD): Impact on neurotropic, neurotrophic, and neuroplasticity signaling. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 119, 110594. https://doi.org/10.1016/j.pnpbp.2022.110594

Elshal, A.M.; Shamshoun, H.; Awadalla, A.; Elbaz, R.; Ahmed, A.E.; El-Khawaga, O.Y.; Shokeir, A.A. Hormonal and molecular characterization of calcium oxalate stone formers predicting occurrence and recurrence. Urolithiasis. 2023, 51, 1, 76. https://doi.org/10.1007/s00240-023-01440-8

Moftakhar, L.; Jafari, F.; Ghoddusi Johari, M.; Rezaeianzadeh, R.; Hosseini, S. V.; Rezaianzadeh, A. Prevalence and risk factors of kidney stone disease in population aged 40–70 years old in Kharameh cohort study: a cross-sectional population-based study in southern Iran. BMC urology, 2022, 22, 1-9. https://doi.org/10.1186/s12894-022-01161-x

Fadhil, Y.S. A Study on Renal Stones Incidence with Regard to Age, Gender and Chemical Composition of Stones in Western Iraq." International Journal of Health Sciences, 2022, 9814-9818. https://dx.doi.org/10.53730/ijhs.v6nS1.7291

Jaff, M.S. ABO and rhesus blood group distribution in Kurds. Journal of blood medicine, 2010, 143-146. https://doi.org/10.2147%2FJBM.S12262

Baatiah, N.Y.; Alhazmi, R.B.; Albathi, F.A.; Albogami, E.G.; Mohammedkhalil, A.K.; Alsaywid, B.S. Urolithiasis: Prevalence, risk factors, and public awareness regarding dietary and lifestyle habits in Jeddah, Saudi Arabia in 2017. Urology Annals, 2020; 12, 1, p.57. https://doi.org/10.4103/UA.UA_13_19

Dawson, C. H.; Tomson, C. R. Kidney stone disease: pathophysiology, investigation and medical treatment. Clinical Medicine, 2012, 12, 467. https://doi.org/10.7861/clinmedicine.12-5-467

Al-Taiee, T.A.K.; Al-Shammaa, N.M. Effect of Anti Diuretic Hormon (ADH) in Kidney Function on Post Hemodialysis End Stage Renal Failure Disease (ESRD) Iraqi Patients. Iraqi Journal of Science, 2018, 1372-1377. https://doi.org/10.24996/ijs.2018.59.3B.4

Salih, S. S.; Yenzeel, J. H. Evaluation of Thyroid Hormones and Some Biochemical Variables in Patients with Chronic Kidney Disease. Iraqi Journal of Science, 2020, 985-992. https://doi.org/10.24996/ijs.2020.61.5.6

Asif, A. A.; Hussain, H.; Chatterjee, T. Extraordinary creatinine level: a case report. Cureus, 2020, 12. https://doi.org/10.7759/cureus.9076

Chatterjee, A.; Sarkar, K.; Bank, S.; Ghosh, S.; Pal, D. K.; Saraf, S.; Wakle, D.; Roy, B.; Chakraborty, S.; Bankura, B.; Chattopadhyay, D. Homozygous GRHPR C. 494G> A mutation is deleterious that causes early onset of nephrolithiasis in West Bengal, India. Frontiers in Molecular Biosciences. 2022, 9. https://doi.org/10.3389/fmolb.2022.1049620

Haley, W. E.; Enders, F. T.; Vaughan, L. E.; Mehta, R. A.; Thoman, M. E.; Vrtiska, T. J.; Krambeck, A.E.; Lieske, J. C.; Rule, A. D. Kidney function after the first kidney stone event. In Mayo Clinic Proceedings, 2016, 91, 12, 1744-1752. https://doi.org/10.1016/j.mayocp.2016.08.014

Geraghty, R.; Abdi, A.; Somani, B.; Cook, P.; Roderick, P. Does chronic hyperglycaemia increase the risk of kidney stone disease? results from a systematic review and meta-analysis. BMJ open, 2020, 10, e032094. https://doi.org/10.1136/bmjopen-2019-032094

Zeng, G.; Mai, Z.; Xia, S.; Wang, Z.; Zhang, K.; Wang, L; Long, Y.; Ma, J.; Li, Y.; Wan, S. P.; Wu, W. Prevalence of kidney stones in China: an ultrasonography based cross‐sectional study. BJU International. 2017, 120, 109-16. https://doi.org/10.1111/bju.13828

Markovič, R.; Grubelnik, V.; Vošner, H. B. Kokol, P.; Završnik, M.; Janša, K.; Zupet, M.; Završnik, J.; Marhl, M. Age-Related Changes in Lipid and Glucose Levels Associated with Drug Use and Mortality: An Observational Study. Journal of Personalized Medicine. 2022, 12, 280. https://doi.org/10.3390/jpm12020280 .

Alzubaidy, D.A.A.M. and Al Obaidy, L.H.A., 2024. GRHPR gene variations in Iraqi patients infected with calcium oxalate kidney stones. Baghdad Science Journal. OnlineFirst, https://doi.org/10.21123/bsj.2024.9066

Lai, C.; Pursell, N.; Gierut, J.; Saxena, U.; Zhou, W.; Dills, M.; Diwanji, R.; Dutta, C.; Koser, M.; Nazef, N.; Storr, R., 2018. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Molecular Therapy, 2018; 26, 8, 1983-1995. https://doi.org/10.1016/j.ymthe.2018.05.016