Detection of (pslA, and PA-SS) Genes in Pseudomonas aeruginosa Isolated from Clinical Cases
Main Article Content
Abstract
In the current study, 100 different clinical samples were collected in Baghdad hospitals, including Teaching Laboratories Hospital, Medical City, Baghdad Teaching Hospital, and Martyr Ghazi Hariri Hospital, for a period from May 2022 to September 2022. After diagnosis, we obtained 19 isolates of Pseudomonas aeruginosa from different clinical sources, including burns, wounds, urinary tract infections, otitis media, and blood. Cultured all samples on MacConkey, cetrimide agar. Then it underwent several microscopic and biochemical tests. Included are: Oxidase, Citrate utilization, Triple sugar-iron (TSI), catalase, Gelatinase, Motility and Ornithine decarboxylation tests. Pseudomonas aeruginosa susceptibility to 11 antibiotics was tested using the disc diffusion method. It has been shown that Pseudomonas aeruginosa has multi-antibiotic resistance. It showed that all isolates were resistant to Penicillin 98%, Cefuroxime Sodium 98%, Amoxicillin/clavulanic Acid 98%, Erythromycin 98%, Oxacillin 98%, Cefotaxime 76%, Ofloxacin 58%, Cefipime 22%, Ceftazidime 16%, and Imipenem 16%. Amikacin was the most effective in isolates, as it was found that 8% are resistant to it. The bacteria's ability to produce biofilm was assessed using a crystal violet (CV) assay, and it was found that all isolates by 100% had the ability to produce biofilm. 15 isolates were 84% strong-forming, 2 (8%) were moderate-forming, and 2 (8%) were weak-biofilm-forming. The biofilm genes pslA, and PA-SS were studied. The results of this study showed that all isolates of Pseudomonas aeruginosa possess these genes by 100%.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Gomila, A.; Carratalà, J.; Badia, J.M., Camprubí, D.; Piriz, M.; Shaw, E.; Diaz-Brito, V.; Espejo, E.; Nicolás, C.; Brugués, M. Preoperative oral antibiotic prophylaxis reduces Pseudomonas aeruginosa surgical site infections after elective colorectal surgery: A multicenter prospective cohort study. BMC Infect. Dis., 2018, 18, 507. http://dx.doi.org/10.1186/s12879-018-3413-1.
Al-Shwaikh, R.M.A.; AL-Shuwaikh A.M.A.; Alornaaouti, A.F. BOX-PCR Fingerprinting for molecular genotyping of P. aeruginosa. Asian Jr. Microbiol. Biotech. Env. Sc., 2018, 20, 3, 738-743.
World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. World Health Organization; Geneva, Switzerland, 2017.
Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv., 2019, 37, 177–192. http://dx.doi.org/10.1016/j.biotechadv.2018.11.013.
Moradali, M.F.; Ghods, S.; Rehm, B.H. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front. Cell Infect. Microbiol., 2017, 7, 39. http://dx.doi.org/10.3389/fcimb.2017.00039.
Al-Shwaikh, R.M.A. DNA Sequences of LasB Gene in Pseudomonas aeruginosa Isolated from Some Clinical Cases. Ibn Al-Haitham J. for Pure & Appl. Sci., 2016, 29 , 1, 366-376.
Mukherjee S. and Bassler B.L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Genet., 2019, 17, 371–382. http://dx.doi.org/10.1038/s41579-019-0186-5.
Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen., 2009, 17, 763–771. http://dx.doi.org/10.1111/j.1524-475X.2009.00543.x.
Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol, 2020, 18, 195–210. http://dx.doi.org/10.1038/s41579-019-0313-3.
Crespo, A.; Blanco-Cabra, N.; Torrents, E. Aerobic Vitamin B12 Biosynthesis Is Essential for Pseudomonas aeruginosa Class II Ribonucleotide Reductase Activity During Planktonic and Biofilm Growth. Front. Microbiol., 2018, 9, 986. http://dx.doi.org/10.3389/fmicb.2018.00986.
Oluyombo, O.; Penfold, C.N.; Diggle, S.P. Competition in Biofilms between Cystic Fibrosis Isolates of Pseudomonas aeruginosa Is Shaped by R-Pyocins. mBio., 2019, 10, e01828-18. http://dx.doi.org/10.1128/mBio.01828-18.
Wanger, A.; Chavez, V.; Huang, R.S.P.; Wahed, A.; Actor, J.K.; Dasgupta, A. Microbiology and Molecular Diagnosis in Pathology. Elsevier Inc. All Rights Reserved, 300pp, 2017.
Levinson, W. Review of Medical Microbiology and Immunology. 14th ed. McGraw-Hill education, Inc, 821 pp., 2016.
Tille, P.M. Bailey and Scott’s diagnostic microbiology. Thirteen edition. Mosby, Inc., an affiliate of Elsevier Inc. 3251 Riverport Lane. St. Louis. Missouri 63043, 2014.
CLSI. Performance standards for antimicrobial susceptibility testing. 28th ed. Clinical and Laboratory Standards Institute, Wayne, PA2018 (CLSI supplement M100), 2018.
Stepanovic´, S.; Vukovic´, D.; Hola, V.; Di Bonaventura, G.; Djukic´, S.; C´ irkovic´, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 2007, 115, 891–9. http://dx.doi.org/10.1111/j.1600-0463.2007.apm_630.x.
Abdulhaq, N.; Nawaz, Z.; Zahoor, M.A.; Siddique, A.B. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. EXCLI J., 2020, 18, 19, 201-208. doi: 10.17179/excli2019-2049.
Oluborode, B.; Smith, S.; Seriki, T.; Ajayi, A.; Coker, A. (2018). Antibiotic Susceptibility Pattern and Molecular Typing By PCR-RAPD Analysis of Clinical and Environmental Isolates of Pseudomonas aeruginosa. Microbiology and Biotechnology Letters. 2018, 46, 434-437. http://dx.doi.org/10.4014/mbl.1805.05007.
Sastory, A.S.; Bhat, S. Essentials of Medical Microbiology. Jaypee Brothers Medical Publishers. New Delhi.844pp, 2021.
SudhaKar, T.; Karpngam, S.; Premkumer, J. Biosynthesis antibacterial activity of pyocyanin pigment ced produced by pseudomonas aeruginosa SU1. JCPRG5, 2015, 7, 3, 921-924.
Baron, E.J.; Finegold, S.M.; Peterson, I.L.R. Bailey and Scotts Diagnostic Microbiology. 9th ed. Mosby Company. Missouri, 2007.
Patil, P.; Joshi, S.; Bharadwaj, R. Aerobic bacterial infections in a burns unit of Sassoon General Hospital, Pune. International J. Healthcare Biomed. Res., 2015, 03, 106-112.
Ceniceros, A.; Peertega, S.; Galeiras, R.; Predicting mortality in burn patients with bacteremia. Infection., 2016, 44, 2, 215–22. DOI: 10.1007/s15010-015-0847-x.
Al-Shwaikh, R.M.A.; Alornaaouti, A.F. Detection of tox A gene in Pseudomonas aeruginosa that isolates from different clinical cases by using PCR. Ibn Al-Haitham Journal for Pure and Applied science, 2017, 26-30. http://dx.doi.org/10.30526/2017.IHSCICONF.1767.
Al-Azzawi, S.N.; Abdullah R.M. Study of the resistance of P. aeruginosa isolated from wounds and burns for some disinfects and antiseptic from some Baghdad hospitals. J. Pharm. Sci. & Res., 2018, 10, 6, 1481-1484.
Obaid, S.A.; Al-Shwaikh, R.M. Evaluation the Efficacy of Bacteriophage against Pseudomonas aeruginosa Isolated from Wound and Burn Infections. Pakistan Journal of Medical & Health Sciences, 2022, 16, 4, 440- 444. http://dx.doi.org/10.53350/pjmhs22164440.
Shariati, A.; Asadian, E.; Fallah, F.; Azimi, T.; Hashemi, A.; Yasbolaghi Sharahi, J.; Taati Moghadam, M. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect Drug Resist., 2019, 12, 2223-2235. http://dx.doi.org/10.2147/IDR.S213200.
Roulová, N.; Mot’ková, P.; Brožková, I.;Pejchalová, M. Antibiotic resistance of Pseudomonas aeruginosa isolated from hospital wastewater in the Czech Republic. J Water Health, 2022, 20, 4, 692–701. http://dx.doi.org/10.2166/wh.2022.101.
Al-Shwaikh, R.M. Production and Characterization of Protease from Pseudomonas aeruginosa Isolated from Some Clinical Cases and its Relation with some Antibiotic Agents. Ph.D. Thesis. College of Science . AL-Mustansiryia University, 2006.
Idrees, E.K.M. Comparison between different phenotypic and genotypic methods for detection of metallo β–lactamases in Pseudomonas aeruginosa that has multidrug resistance to antibiotics . College of Science. Abdel Aziz University, 2012.
Hassuna, N.A.; Ibrahim, A.H.; Abo Eleuoon, S.M.; Rizk, H.A.W. High prevalence of Multidrug Resistant Pseudomonas aeruginosa recovered from Infected Burn Wounds in children. Archives of Clinical Microbiology, 2015, 6, 4, 1-7.
Asghar, A.H.; Ahmed, O.B. Prevalence of aminoglycoside resistance genes in Pseudomonas aeruginosa isolated from a tertiary care hospital in Makkah, KSA. Clinical Practice, 2018, 15, 2, 541-547. http://dx.doi.org/10.4172/clinical-practice.1000391.
Mustafa, S.M.; Abdullah, R.M. Investigation for some Aminoglycosides Modifying Enzymes-Encoding Genes and Co-Resistance to Fluoroquinolones among Klebsiella pneumoniae Isolates from Different Clinical Cases. Iraqi Journal of Science, 2020, 61, 11, 2866-2878. http://dx.doi.org/10.24996/ijs.2020.61.11.10.
Abdullah, R.M. A Study the Effect of TiO2 Nanoparticles Combination with Antibiotics and Plant extracts Against Some Gram Negative Bacteria. Baghdad Journal of Science, 2016, 3, 13, 425- 434. http://dx.doi.org/10.21123/bsj.2016.13.3.0425.
Banar, M.; Emaneini, M.; Satarzadeh, M.; Abdellahi, N.; Beigverdi, R; Leeuwen, W.B. Evaluation of Mannosidase and Trypsin Enzymes Effects on Biofilm Production of Pseudomonas aeruginosa Isolated from Burn Wound Infections. PLoS One, 2016, 11(10): e0164622. http://dx.doi.org/10.1371/journal.pone.0164622.
Namuq, A.O.; Ali, K.O.M. and Al-Ani, A.H. Correlation between biofilm formation, multi-drug resistance and algD gene among Pseudomonas aeruginosa clinical isolates. Journal of University of Babylon for Pure and Applied Sciences, 2019, 27, 3, 143-150.
Elmaraghy, N.; Abbadi, S.; Elhadidi, G.; Hashem, A.; Yousef, A. Virulence genes in Pseudomonas aeruginosa strains isolated at Suez canal university hospitals with respect to the Site of infection and antimicrobial resistance. Int. J. Clin. Microbiol Biochem Technol. 2019, 2, 8-19. https://doi.org/10.29328/journal.ijcmbt.1001006.
Abootaleb, M.; Zolfaghari, M.R.; Soleimani, N.A.; Ghorbanmehr, N.; Yazdian, M.R. Biofilm formation with Microliter plate 96 and pslA detection of Pseudomonas aeruginosa isolates from clinical samples in Iran. Int J Adv Biol Biomed Res. 2020, 8, 58-66.
Heydari, S.; Eftekhar, F. Biofilm formation and β-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J Microbiol. 2015, 8, 1-5. http://dx.doi.org/10.5812/jjm.15514.
Issa, M.A.; Ghaima, K.K.; Saleh, M.B.; Nader, M.I. Antibiogram study and prevalence of pslA gene among biofilm pseudomonas aeruginosa producers isolated from some clinical specimens in Thiqar province. Pak. J. Biotechnol. 2018, 15, 3, 681-688. https://pjbt.org/index.php/pjbt/article/view/361.
Motevasel, M.; Haghkhah, M. Antimicrobial resistance profiles and virulence genes of Pseudomonas aeruginosa isolates originated from hospitalized patients in Shiraz, Iran. Journal of Medical Microbiology and Infectious Diseases, 2018, 6, 2, 72-76. http://dx.doi.org/10.29252/JoMMID.6.2.3.72.
Cho, H.H.; Kwon, K.C.; Kim, S.; Park, Y.; Koo, S.H. Association between biofilm formation and antimicrobial resistance in carbapenem-resistance Pseudomonas aeruginosa. Ann. Clin. Lab. Sci., 2018, 48, 3, 363-368.
Pedersen, S. S.; Hoiby, N.; Espersen, F.; Koch, C.H. Role of alginate in infection with mucoid Pseudomonas aeruginosa in cystic fibrosis. Thorax, 1992, 47, 1, 6-13. http://dx.doi.org/10.1136/thx.47.1.6.