Analysing the Result Involution Graph of the Group J3

Authors

DOI:

https://doi.org/10.30526/37.4.3405

Keywords:

Janko Groups, Result Involution Graph, Connectedness, Girth

Abstract

        Assume that G be a finite group and let I(G) be the set of the involution elements in G. The result involution graph denoted by , , is an undirected simple graph having the elements of G as a vertex set. Moreover, two vertices in are connected by an edge if they are distinct and their product belong to I(G). The objective of this work is to investigate the result involution graph for the Janko group J3. In this paper we compute different result involution graph features, such as the radius, the diameter, the clique number, and the girth. Furthermore, the connectedness of the result involution graph is determined. All of the steps needed for analyzing the result involution graph were carried out using the computational technique along with theoretical support.

 

References

Aubad, A.; Rowley, P. Commuting Involution Graphs for Certain Exceptional Groups of Lie Type. Graphs and Combinatorics 2021, 37,1345–1355. https://doi.org/10.1007/s00373-021-02321-w.

Bhat,V.K; Sharma, K. On Some Topological Indices for the Orbit Graph of Dihedral Groups. Journal of Combinatorial Mathematics and Combinatorial Computing 2023, 117, 195-208. https://doi.org/10.61091/jcmcc117-18.

Cameron, P. J.; Kuzma, B. Between the enhanced power graph and the commuting graph. Journal of Graph Theory, 2023, 102(2), 295-303.‏ https://doi.org/10.1002/jgt.22871.

Gaftan, A.M.; Mohammed, A.S.; Subhi.O.H. Cryptography by Using"Hosoya"Polynomials for"Graphs Groups of Integer Modulen and"Dihedral Groups with’Immersion"Property. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2018, 31,151–159. https://doi.org/10.30526/31.3.2008.

Hamdi, H. Investigation the order elements 3 in certain twisted groups of lie type. Italian Journal of Pure and Applied Mathematics, 2022, 48, 621-629. https://ijpam.uniud.it/onlineissue/202248/48%20Hamdi.pdf.

Khudhur, P.M.; Haji, R.R.; Khasraw, S.M. The Intersection Graph of Subgroups of the Dihedral Group of Order 2pq. Iraqi Journal of Sciences, 2021, 62, 4923–4929. https://doi.org/10.24996/ijs.2021.62.12.30.

Konstantinova,E.V.; Kravchuk,A. Spectrum of the Transposition graph. Linear Algebra and its Applications, 2022, 654, 379 – 389. https://doi.org/10.1016/j.laa.2022.08.033.

Kumari, M.L.; Pandiselvi, L.; Palani, K. Quotient Energy of Zero Divisor Graphs And Identity Graphs. Baghdad Sci.J , 2023, 20, 0277. https://doi.org/10.21123/bsj.2023.8408.

Nawaf, A. J.; Mohammad, A. S. Some Topological and Polynomial Indices (Hosoya and Schultz) for the Intersection Graph of the Subgroup of〖 Z〗_(r^n). ). Ibn AL-Haitham Journal For Pure and Applied Sciences, 2021, 34, 68-77. https://doi.org/10.30526/34.4.2704.

Neamah, A. A.; Majeed, A. H.; Erfanian, A. The generalized Cayley graph of complete graph Kn and complete multipartite graphs K (n,n) and K(n,n,n). Iraqi Journal of Science, 2022, 63(7), 3103–3110. https://doi.org/10.24996/ijs.2022.63.7.31.

Newman, A. Abelian Groups from Random Hypergraphs. Combinatorics Probability Computing, Cambridge University Press, 2023, 32, 654 – 664. https://doi.org/10.1017/s0963548323000056.

Romdhini, M. U.; Nawawi, A.; Chen, C. Y. Neighbors degree sum energy of commuting and non-commuting graphs for dihedral groups. Malaysian Journal of Mathematical Sciences, 2023, 17(1), 53–65. https://doi.org/10.47836/mjms.17.1.05.

Roslly, S. R. D.; Ab Halem, N. F. A. Z.; Zailani, N. S. S.; Alimon, N. I.; Mohammad, S. A. Generalization of Randic ́ Index of the Non-commuting Graph for Some Finite Groups. Malaysian Journal of Fundamental and Applied Sciences, 2023, 19(5), 762-768. https://doi.org/10.11113/mjfas.v19n5.3047.

Tolue, B. The twin non-commuting graph of a group. Rendiconti del Circolo Matematico di Palermo Series 2 2020, 69(2), 591–599 . https://doi.org/10.1007/s12215-019-00421-4.

Devillers, A.; Giudici, M. Involution graphs where the product of two adjacent vertices has order three. Journal of the Australian Mathematical Society 2008, 85, 305–322. doi:10.1017/S1446788708000839.

Jund, A.; Salih, H. Result involution graphs of finite groups. Journal of Zankoy Sulaimani, 2021, 23, 113–118. doi:10.17656/jzs.10846.

Aubad, A.; Salih, H. More on Result Involution Graphs. Iraqi Journal of Science 2023, 64, 331–240. https://doi.org/10.24996/ijs.2023.64.1.30.

Oudah, M.M.; Aubad, A. Computational Investigation of The Result Involution Graphs for The Conway Group Co3. Wasit Journal of Pure Sciences 2023, 2, 141–146. https://doi.org/10.31185/wjps.112.

The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.12.2. Available online: http://www.gap-system.org/ (accessed on 10 January 2023).

Cedillo, J.; MacKinney-Romero.R.; Pizaa.M.A.; Robles.I.A.; Yet Another Graph System,YAG, ” Version 0.0.5. Available online: http://brauer.maths. qmul.ac.uk /Atlas /v3/ (accessed on 1 February 2023).

Wilson, R. A.; Walsh .P.; Tripp.J.; Suleiman.I.; Parker .R.; Norton.S.; Nickerson S. J.; Linton.S.; Bray J. N.; A world wide web Atlas of Group Representations. Version 3 Available online: http://brauer.maths.qmul.ac.uk/Atlas/v3/ (accessed on 30 October 2022).

Downloads

Published

20-Oct-2024

Issue

Section

Mathematics

Publication Dates

Received

2023-04-12

Accepted

2023-05-18

Published Online First

2024-10-20