Metoprolol Tartrate Drug Loading and Release from Prepared Mesoporous Silica; Kinetic of Adsorption and Release

Authors

DOI:

https://doi.org/10.30526/37.2.3410

Keywords:

Metoprolol tartrate, Drug carrier, Mesoporous silica, Drug release, Adsorption kinetics

Abstract

Mesoporous silica was developed to transport metoprolol tartrate (MPT). The data obtained from the kinetic experiments of adsorption of 15 ppm of MPT drug at 293 K was fitted in the pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The results show that the adsorption process obeys the pseudo-first-order equation and the rate-controlling step, not just the intraparticle diffusion step. The MPT drug load onto mesoporous silica was 15.13 mg/g. The release profile shows that the MPT drug was about 55% released after 40 min when released in water, while in phosphate-buffered saline (PBS) media, the release reached 90% after 60 min at body temperature (37°C). Three kinetic release versions, including first-order, Kopcha, and Korsmeyer-Peppas, were used to fit the in vitro drug release data. The results indicate that the Korsmeyer-Peppas model provided the best fit. The predicted n values show that the release process for water and PBS pH 7.4 media is not Fickian.

References

Garcia-Bennett, A.E. Synthesis, toxicology and potential of ordered mesoporous materials in nano medicine. Nano medicine 2011, 6(5),867–877. https://doi: 10.2217/nnm.11.82.

Vallet-Regi, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of MCM-41. Drug delivery system. Chem Mater 2001,13(2),308–311. https://doi.org/10.1021/cm0011559.

Manzano, M.; Vallet‐Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Mater 2020, 30(2),1902634. https://doi.org/10.1002/adfm.201902634.

Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opinion on Drug Delivery 2019, 16(3),219-237. https://doi: 10.1080/17425247.2019.1575806.

Vallet-Regí, M.; Schüth, F.; Lozano, D.; Colilla, M.; Manzano, M. Engineering mesoporous silica nanoparticles for drug delivery: where are we after two decades?. Chem Soc Rev 2022, 51(13),5365-5451. https://doi:10.1039/d1cs00659b.

Andrade, G.F.; Soares, D.C.F.; Almeida, R.K.D.S.; Sousa, E.M.B. Mesoporous silica SBA-16 functionalized with alkoxysilane groups: Preparation, characterization, and release profile study. J Nanomater 2021, 2012,1687–4110. https://doi.org/10.1155/2021/816496.

Ambrogi, V.; Perioli, L.; Marmottini, F.; Accorsi, O.; Pagano, C.; Ricci, M.; Rossi, C. Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Micropor Mesopor.Mater 2008, 113(1-3),445–452. https://doi:10.1016/j.micromeso.2007.12.003.

Eren, Z.S.; Tunçer, S.; Gezer, G.; Yildirim, L.T.; Banerjee, S.; Yilmaz, A. Improved solubility of celecoxib by inclusion in SBA-15mesoporous silica: Drug loading in different solvents and release. Micropor Mesopor Mater 2019, 235, 211–223. https://doi:10.1016/j.micromeso.2019.08.014.

Charnay, C.; Bégu, S.; Tourné-Péteilh, C.; Nicole, L.; Lerner, D.A.; Devoisselle, J.M. Inclusion of ibuprofen in mesoporous templated silica: Drug loading and release property. Eur J Pharm Biopharm 2004, 57(3),533–540. https://doi: 10.1016/j.ejpb.2003.12.007

Limnell, T.; Santos, H.A.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Murzin, D.Y.; Kumar, N.; Laksonen, T.; Peltonen, L.; Hirvonen, J. Drug delivery formulations of ordered and nonordered mesoporous silica: comparison of three drug loading methods. J Pharm Sci 2011, 100(8),3294–3306. https://doi: 10.1002/jps.22577

Abd-elbary, A.; El Nabarawi, M.A.; Hassen, D.H.; Taha, A.A. Inclusion and characterization of ketoprofen into different mesoporous silica nanoparticles using three loading methods. Int J Pharm. Pharm Sci 2014, 6(9),183–191.

https://journals.innovareacademics.in/index.php/ijpps/article/view/2014/9727.

Vadia, N.; Rajput, S. Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. Eur J Pharm Sci 2012, 45(1-2),8–18. https://doi:10.1016/j.ejps.2011.10.016.

Guo, Z.; Liu, X.-M.; Ma, L.; Li, J.; Zhang, H.; Gao, Y.-P.; Yuan, Y. Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement. Colloids Surf B Biointerfaces 2021, 101, 228–235. https://doi: 10.1016/j.colsurfb.2020.06.026.

Ambrogi, V.; Perioli, L.; Marmottini, F.; Giovagnoli, S.; Esposito, M.; Rossi, C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci 2007, 32(3),216–222. https://doi:10.1016/j.ejps.2007.07.005.

Martín, A.; García, R.A.; Karaman, D.S.; Rosenholm, J.M. Polyethyleneimine-functionalized large pore ordered silica materials for poorly water-soluble drug delivery. J Mater Sci 2019, 49(3), 1437–1447. https://doi:10.1007/s10853-013-7828-1.

Thomas, M.J.K.; Slipper, I.;Walunj, A.; Jain, A.; Favretto, M.E.; Kallinteri, P.; Douroumis, D. Inclusion of poorly soluble drugs in highly ordered mesoporous silica nanoparticles. Int. J. Pharm., 2010, 387(1-2), 272–277. https://doi:10.1016/j.ijpharm.2009.12.023.

Kareem, S.H. Magnetic mesoporous silica material (Fe3O4@ mSiO2) as adsorbent and delivery system for ciprofloxacin drug. IOP Conf. Ser.: Mater Sci Eng 2020,871,012020. https://doi:10.1088/1757-899X/871/1/012020.

Hussein, E.A.;Kareem, S.H. Mesoporous silica nanoparticles as a system for ciprofloxacin drug delivery; kinetic of adsorption and releasing. Baghdad Sci J 2021, 18(2),357-365. http://dx.doi.org/10.21123/bsj.2021.18.2.0357.

Ghedini, E.;Signoretto, M.;Pinna, F.; Crocellà, V.; Bertinetti, L.; Cerrato, G. Controlled release of metoprolol tartrate from nanoporous silica matrices., Micropor Mesopor Mat 2010, 132(1-2),258-267. https://doi:10.1016/j.micromeso.2010.03.005

Lagergren, S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 1898, 24,1-39. https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1530542

Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem 1999, 34,451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.

Hiawi, F.A.; Ali , I.H. Study the interaction adsorptive behavior of sunset yellow dye and loratadine drug: Kinetics and thermodynamics study. IHJPAS 2023,36(1),196-186. https://doi: https://doi.org/10.30526/36.1.2974.

Weber Jr, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. San. Eng. Div. ASCE.1963,89(2),31-59. https://www.scirp.org/reference/referencespapers?referenceid=2080421.

Doke, K.M. ;Khan, E.M. Equilibrium, kinetic and diffusion mechanism of Cr (VI) adsorption onto activated carbon derived from wood apple shell. Arab J Chem 2012, 10(2017),252-260. https://doi:10.1016/j.arabjc.2021.07.031

Hameed, B.H.; Mahmoud, D.K.; Ahmad, A.L. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. J Hazar Mater 2008, 158(1),65-72. https://doi.org/10.1016/j.jhazmat.2008.01.034.

Cicily, J.R. Biomedical applications of mesoporous silica particles, doctoral dissertation, The University of Iowa: Iowa City, DC, 2017. https://doi: 10.17077/etd.837jo63c.

Mei, X.; Chen, D.;Li, N.;Xu, Q.; Ge, J.; Li, H.;Yang, B.; Xu, Y.; Lu, J. Facile preparation of coating fluorescent hollow mesoporous silica nanoparticles with pH-sensitive amphiphilic diblock copolymer for controlled drug release and cell imaging. Soft Matter 2012, 19(8),5309-5316. https://pubs.rsc.org/en/content/articlelanding/2012/sm/c2sm07320j.

Uribe Madrid, S.I.; Pal, U.; Kang, Y.S.; Kim, J.; Kwon, H.; Kim, J. Fabrication of Fe3O4@ mSiO2 core-shell composite nanoparticles for drug delivery applications. Nanoscale Res Lett 2015, 10,1-8. https://doi: 10.1186/s11671-015-0920-5.

Badran, M.M.; Alomrani, A.H.; Almomen, A.; Bin Jardan, Y.A.; Abou El Ela, A.E.S. Novel metoprolol-loaded chitosan-coated deformable liposomes in thermosensitive in situ gels for the management of glaucoma: A Repurposing Approach Gels 2022, 8(10),635. https://doi.org/10.3390/gels8100635.

Heredia, N.S.; Vizuete, K.; Flores-Calero, M.; Pazmiño, V.K.; Pilaquinga, F.; Kumar, B.; Debut, A. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly (lactic-co glycolicacid). PLOS ONE 2022, 17(3),e0264825. https://doi.org/10.1371/journal.pone.0264825.

Otalvaro, J.O.; Álvarez, T.R.; Gurovic, M.S.V.; Lassalle, V.; Agotegaray, M.; Avena, M.; Brigante, M. Magnetic mesoporous silica nanoparticles for drug delivery systems: Synthesis, characterization and application as norfloxacin carrier. J Pharm Sci 2022, 111(10),2879-2887. https://doi: 10.1016/j.xphs.2022.05.024

Albayati, T.M.; Abd Alkadir, A.J. Synthesis and characterization of mesoporous materials as a carrier and release of prednisolone in drug delivery system. J Drug Deliv Sci Technol 2019, 53,101-176. https://doi.org/10.1016/j.jddst.2019.101176.

Vora, C.; Patadia, R.; Mittal, K.; Mashru, R. Risk based approach for design and optimization of stomach specific delivery of rifampicin. Int J Pharm 2013, 455(1-2),169-181. https://doi: 10.1016/j.ijpharm.2013.07.043.

Tariq, R.; Mammar, D.E. Synthesis, characterization and surface properties of nano-TiO2 using a novel leaf extracts. IHJPAS 2023, 36(4),221-231. https://doi.org/10.30526/36.4.3161.

Downloads

Published

20-Apr-2024

Issue

Section

Chemistry

Publication Dates