Investigating the Presence of eap and spa Genes of Staphylococcus aureus and their Relation to Antibiotic Resistance
Main Article Content
Abstract
Staphylococcus aureus is an extracellular and intracellular microbe that can infect different mammalian cells like epithelial, endothelial, and osteoblasts. It is a source of recurrent infection and has persistently caused a variety of human diseases, like skin infections and systemic diseases such as osteomyelitis, endocarditis, pneumonia, bacteremia, sepsis, and toxic shock syndrome. Diagnosed (30) isolates of S. aureus have been taken from urine. A clinical sample has been done according to the culture on mannitol salt agar and biochemical tests, then identification through amplification of the 16srRNA gene by conventional PCR, detection of spa and eap genes by conventional PCR found all isolated to have a spa gene with a percentage of 100% but an eap gene found with a percentage of 53.3%, and detection of their relation with antibiotic resistance found 76.70% of this isolates resistance to different types of antibiotic. Many factors contributed to the rapid development of antimicrobial resistance, including cell membrane disruption, environmental factors, and DNA damage. All of these factors contributed to the rapid development of antibiotic resistance. Staphylococcus aureus is resistant to a lot of commonly used antibiotics, such as Beta-lactams, Tetracycline, Aminoglycosides, Fluoroquinolones, Macrolides, and Chloramphenicol.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Xiao, X; Li; Y; Li; L; Xiong, Y.Q. Identification of Methicillin-resistant Staphylococcus aureus (MRSA) genetic factors involved in human endothelial cells damage, an important phenotype correlated with persistent endovascular infection. Antibiotics. 2022, 11(3), 316. https://doi.org/10.3390%2Fantibiotics11030316.
Cheung, G.Y.C; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021, 12(1), 547-569, https://doi.org/10.1080%2F21505594.2021.1878688.
Rasheed, N.A.; Hussein, N. R. Staphylococcus aureus: An Overview of Discovery, Characteristics, Epidemiology, Virulence Factors and Antimicrobial Sensitivity. European Journal of Molecular & Clinical Medicine. 2021, 8(3).
Riedel, S; Morse, A.S.; Mietzner, T.; Miller, S. Jawetz, Melnick & Adelbergs, Medical Microbiology, 2019 .28th Edition.
Kadhim, B.A; Essa, M.A; Sabbah, M.R. Prevalence of enterotoxin type A in Staphylococcus aureus isolated from different sources. Iraqi Journal of Agriculture Sciences. 2022, 53(6), 1325-1330. DOI: https://doi.org/10.1590%2FS1517-83822013000200008.
Abdrabaa, M.K.; Aburesha, R.A. Gene expression evaluation of intracellular adhesion and regulatory genes among biofilm producing MRSA isolates. Iraqi Journal of Science. 2023, 1(64), 75-83. DOI: https://doi.org/10.24996/ijs.2023.64.1.8.
Obaid, W.A.; Abdulwahhab, A.S. Impacts of starvation stress on biofilm formation and expression of virulence genes in mono-and mixed –species cultures of Pseudomonas aeruginosa and Staphylococcus aureus. Biochemical & Cellular Archives. 2021, 21(1) 685-693.
Najem, M.J.; Lafta, I.J. Characterization of Mannitol fermenter and salt Tolerant Staphylococci from breast tumor biopsies of Iraqi women. Baghdad Science Journal. 2020, 17(2), 415-425. DOI: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3661.
Al-Hasnawi, E.A. Isolation of Staphylococcus aureus from ear swab in Iraq children as a causative agent of otitis externa. Journal of Medicine- Baghdad. 2017, 59(3), 258-261, DOI: https://doi.org/10.32007/jfacmedbagdad.593100.
Chotigarpa, R.; Lampang, K.; Pikulkaew, S.; Okonogi, S.; Ajariyakhajorn, K.; Mektrirat, R. Inhibitory effects and killing kinetics of lactic acid rice gel against pathogenic bacteria causing bovine mastitis. Scientia pharmaceutica Multidisciplinary Digital Publishing Institute. 2018, 86(3), 1-10. DOI: https://doi.org/10.3390/scipharm86030029.
Omran, A.S.; Hussein, A.N. Molecular investigation of mec gene Among coagulase negative Staphylococcus isolated from different cases. Journal of Physics: Conference Series. 2019, 1234(1), 12074, DOI: https://doi.org/10.1088/1742-6596/1234/1/012074.
Mahdi, E.A.; Al-Shaibani, A.; Zbar, N.S. The impact of glucse and chloride on the biofilm formation of Pseudomonas aeruginosa& Staphylococus aureus. Ibn AL-Haitham Journal For Pure and Applied Sciences. 2020, 33(4), 1-9. https://doi.org/10.30526/33.4.2525.
Rakotovao-Ravahatra, Z.D.; Randriatsarafara, F.M.; Milasoanjara, R.N.; Ranaivosoa, M.K., Rakotovao, A.L.; Rasamindrakotroka, A. Assessment of the Coagulase Test in the Identification of Staphylococcus aureus Strains. Journal of Biotechnology and Biomedicine. 2019, 2(3), 105-111.
Onasanya, A.; Mignouna, H.D.; Thottappilly, G. Genetic fingerprinting and phylogenetic diversity of Staphylococcus aureus isolates from Nigeria. African Journal of Biotechnology. 2003, 2(8), 246-250. DOI: https://doi.org/10.24996/ijs.2021.62.1.6.
Al-Noaami, R.J. Detection the genotype estimation of allele frequencies for ABO groups an Rh factor in population of Selah Al-Dine and Kirkuk and Neneva provinces. PhD. Thesis, Tikrit University, 2014.
Jassim, S.A.; Kandala, N.J. Molecular detection of enterotoxin genes of multiresistant Staphylococcus aureus isolates from Different sources of food. Iraqi journal of Science, 2021, 62(1), 61-74. https://doi.org/10.24996/ijs.2021.62.1.6.
Gumaa, M.A.; Idris, A.B.; Bilal, N.E.; Hassan, M.A. First insights into molecular basis identifcation of 16 s ribosomal RNA gene of Staphylococcus aureus isolated from Sudan. BMC Research Notes. 2021, 14(1), 240. DOI: https://doi.org/10.1186/s13104-021-05569-w.
Clinical and Laboratory Standaards Institute (CLSI). Performance Standard for Antimicrobial Susceptibility testing. 32nd ed, West Valley Road, Pennsylvania, USA, 2023.
Sastry, A.S.; Bhat, S.; Janagond, A.B.; Deepashree, R.; Ray, P.; Sistla, S. Essentials of Medical Microbiology. 3rd ed , Jaypee Brothers Medical Publishers The Health Sciences Publisher New Delhi London, 2021.
Clinical and Laboratory Standards Institute (CLSI). Performance Standard for Antimicrobial Susceptibility testing. 30th ed, West Valley Road, Pennsylvania, USA, 2021.
Fadhil, H.; Mohammed, J. Molecular and Classical identification of Staphylococcus aureus , isolated from Iraqi Patients with recurrent tonsillitis. Medico-legal Update. 2022, 22(1). https://doi.org/10.37506/mlu.v22i1.3176.
Alwash, S.J.H. Molecular analysis of toxin associated genes in clinical and non-clinical methicillin- resistant Staphylococcus aureus isolates. PhD. thesis, Baghdad university, College of Science, Biology, 2021.
Hussain, M.; Eiff, C.V.; Sinha, B.; Joost, I.; Herrmann, M.; Peters, G.; Becker, K . Eap gene as novel target for specific identification of Staphylococcus aureus. Clinical Microbiology, 2008, 470-476. DOI: https://doi.org/10.1128/jcm.01425-07.
Burke, K.C. Introduction of microbiology 22.2 Selective and differential media-MacConkey, EMB, MSA. Libre Texts, 2020.
Aryal, S. Mannitol salt agar for the isolation of Staphylococcus aureus. Microbiology info. 2022, 10.
Jaddoa, N.T.M.; Al-Mathkhury, H.J.F. Biofilm shows independency form hemolysin genes arsenal in methicillin resistant Staphylococcus aureus. Iraqi Journal of Science. 2018, 59(4), 2184-2194. DOI: https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/591.
Guo , Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic- Resistance in Staphylococcus areus. Frontiers in Cellular and infection Microbiology. 2020, 10, 107. DOI: https://doi.org/10.3389%2Ffcimb.2020.00107.
Parthasarathy, A.K; Chougale, R.A. Insights Into Drug Resistance in Staphylococcus aureus, Antibiotic Resistant Staphylococcus aureus, 2021. 23rd https://doi.org/10.5772/intechopen.100057.
Naorem, R.S; Urban, P; Goswami, G; Fekete, C. Characterization of methicillin-resistant Staphylococcus aureus through genomics approach. Biotech, 2020, 10(9), 401. DOI: https://doi.org/10.1007/s13205-020-02387-y.
Afzal, M.; Vijay, A.K.; Stapleton, F.; Willcox, M. Virulence genes of staphylococcus aureus associated with keratitis, conjunctivitis, and contact lens–associated inflammation. Transl Vis Science Technology. 2022, 11(7), 5. https://doi.org/10.1167/tvst.11.7.5
Khan, S.; Marasa, B.S; Sung, K.; Nawaz, M. Genotypic Characterization of Clinical Isolates of Staphylococcus aureus from Pakistan. Pathogens. 2021, 10, 918. https://doi.org/10.3390/pathogens10080918.
Zhang, Z.; Chen, Y.; Li, X.; Wang, X.; Lia, H. Detection of Antibiotic Resistance, Virulence Gene, and Drug Resistance Gene of Staphylococcus aureus Isolates from Bovine Mastitis. Microbiology Spectrum. 2022, 10(4).DOI: https://doi.org/10.1128/spectrum.00471-22.
Alwash, S.J; Aburesha, R.A. Detection of toxin-associated genes in seven spa-types of Staphylococcus aureus in Iraq. Indian Journal of forensic medicine & Toxicology. 2021, 15(3),DOI: https://doi.org/10.37506/ijfmt.v14i4.11540.
Gonzalez, C.D.; Ledo, C.; Giai, C; Garófalo, A.; Gómez, M. The Sbi Protein Contributes to Staphylococcus aureus Inflammatory Response during Systemic Infection. PLOS One. 2015, 10(6). DOI: https://doi.org/10.1371/journal.pone.0131879.
Eisenbeis , J.; Saffarzadeh, M.; Peisker, H.; Jung, P.; Thewes, N.; Preissner, K.T.; Herrmann, M.; Molle, V.; Geisbrecht, B.V.; Jacobs, K.; Bischoff, M. The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Front. Cell. Infect. Microbiol, 2018, 8, 235. DOI: https://doi.org/10.3389/fcimb.2018.00235.
Aburesha, R.A; Hussein, H; Khalaf, Z.Z; Mohamed, B.J. Extraction of methicillin resistant Staphylococcus aureus (Mrsa) golden pigment and study it antioxidant activity on macrophage killing pathway. ISOR Journal of Pharmacy and biological Sciences(ISOR-JPBS). 2018, 13(4), 40-43. DOI: https://doi.org/10.9790/3008-1304054043.