FABP and Some Related Diabetic Parameters Among Adolescents with Toxoplasma gondii

Main Article Content

Yousif Riyadh Shakir Al-Halbousi
Harith Saeed Al-Warid

Abstract

Recently, it has been revealed that Toxoplasmosis may be associated with some factors related to type 2 diabetes, such as glucose, insulin, the Homeostatic Model Assessment for Insulin Resistant (HOMA-IR), and Fatty acid binding protein (FABP). Therefore, the current study aimed to specify how Toxoplasma gondii (T.gondii) infection affects glucose, insulin, HOMA-IR, and FABP among adolescents. From October to December 2022, this study was carried out at Al Madain Hospital in Baghdad. For a group of adolescents visiting the hospital, an ELISA test was performed to check their anti-T.gondii antibodies. Ninety adolescents were selected to participate in the study on the basis of this examination. They were divided into two groups: those who tested positive for the parasite (n = 45) and those who tested negative (n = 45), the control group. Measurements were performed on each participant's adolescence: weight for age percentile, weight for age z score, glucose, insulin, HOMA-IR, and FABP. Results showed that the T. gondii positive group had a significantly (P˂0.05) higher weight for age percentile (86.84±2.66) and z score (1.29 ±0.11) versus the control group. Results also showed that those overweight adolescents with seropositive antibodies had significantly (P˂0.05) greater levels of each glucose, insulin, HOMA-IR , and FABP than did a seronegative group of adolescents

Article Details

How to Cite
[1]
Riyadh Shakir Al-Halbousi , Y. and Al-Warid, H.S. 2024. FABP and Some Related Diabetic Parameters Among Adolescents with Toxoplasma gondii. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 11–18. DOI:https://doi.org/10.30526/37.3.3440.
Section
Biology

Publication Dates

Received

2023-04-24

Accepted

2023-05-28

Published Online First

2024-07-20

References

Dubey, J.; Jones, J. Toxoplasma gondii infection in humans and animals in the United States. International journal for parasitology 2008, 38, 1257-1278. doi: 10.1016/j.ijpara.2008.03.007

Abarikwu, S.O. Causes and risk factors for male-factor infertility in Nigeria: a review. African Journal of Reproductive Health 2013, 17. https://www.jstor.org/stable/24362421.

Baqer, N.N.; Saheb, E.J.; Ahmed, N.S.; Alhadad, N.A.A. The association of IL-3, IL-17A, and IL 27 serum levels with susceptibility to toxoplasmosis in recurrent abortion of Iraqi women. Experimental Parasitology 2022, 234, 108217.doi:10.1016/j.exppara.2022.108217

Kim, K.; Weiss, L.M. Toxoplasma: the next 100 years. Microbes and Infection 2008, 10, 978-984. doi: 10.1016/j.micinf.2008.07.015

Hill, D.; Dubey, J. Toxoplasma gondii: transmission, diagnosis and prevention.Clinical microbiology and infection 2002, 8, 634-640. doi:10.1046/j.1469-0691.2002.00485.x

Zghair, K.H.; Al-Qadhi, B.N.; Mahmood, S.H. The effect of toxoplasmosis on the level of some sex hormones in males blood donors in Baghdad. Journal of Parasitic Diseases 2015, 39, 393-400. doi:10.1007/s12639-013-0382-6

Aziz, F.M.; Drueish, M.J. Toxoplasmosis: serious disease during pregnancy. Baghdad Science Journal 2011, 6;8(1):91-5. https://doi.org/10.21123/bsj.2011.8.1.91-95

Reeves, G.M.; Postolache, T.T.; Mazaheri, S.; Snitker, S.; Langenberg, P.; Giegling, I.; Hartmann, A.; Konte, B.; Friedl, M.; Okusaga, O. A positive association between T. gondii seropositivity and obesity. Frontiers in public health 2013, 73.doi: 10.3389/fpubh.2013.00073

Ali, H.Z.; Al-Warid, H.S. Changes in Serum Levels of Lipid Profile Parameters and Proteins in Toxoplasma gondii Seropositive Patients. Iraqi Journal of Science 2021, 801-810. doi:https://doi.org/10.24996/ijs.2021.62.3.11

Xu, F.; Lu, X.; Cheng, R.; Zhu, Y.; Miao, S.; Huang, Q.; Xu, Y.; Qiu, L.; Zhou, Y. The influence of exposure to Toxoplasma Gondii on host lipid metabolism. BMC Infectious Diseases 2020, 20, 1-9. https://doi.org/10.1186/s12879-020-05138-9

Al-Khafajii, G.S.; Al-Warid, H.S.; Al-Abbudi, F.A. The association between Toxoplasma gondii seropositive status and diabetes mellitus in obese and non-obese subjects in Baghdad. Iraqi Journal of Science 2021, 1793-1803.https://doi.org/10.24996/ijs.2021.62.6.5

Elfadaly, H.A.; Hassanain, M.A.; Shaapan,R.M.; Hassanain, N.A.; Barakat, A.M. Corticosteroids opportunist higher Toxoplasma gondii brain cysts in latent infected mice. Int J Zool Res 2015, 11, 169-176. 10.3923/ijzr.2015.169.176

Moudgil, A.D.; Singla, L.D.; Sharma, A.; Bal, M.S. First record of Toxoplasma gondii antibodiesin Royal Bengal tigers (Panthera tigris tigris) and Asiatic lions (Panthera leo persica) in India. Veterinaria Italiana 2019, 55, 157-162. doi:10.12834/VetIt.971.5066.3

Beshay, E.V.N.; El-Refai, S.A.; Helwa, M.A.; Atia, A.F.; Dawoud, M.M. Toxoplasma gondii as a possible causative pathogen of type-1 diabetes mellitus: evidence from case-control and experimental studies. Experimental parasitology 2018, 188, 93-101. doi:10.1016/j.exppara.2018.04.007

Trojnar, M.; Patro-Małysza, J.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B.; Mosiewicz, J. Associations between fatty acid-binding protein 4–A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells 2019, 8, 227. doi: 10.3390/cells8030227

Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nature reviews Drug discovery 2008, 7, 489-503.

Wang, B.; Xu, J.; Ren, Q.; Cheng, L.; Guo, F.; Liang, Y.; Yang, L.; Tan, Z.; Fu, P.; Ma, L. Fatty acid-binding protein 4 is a therapeutic target for septic acute kidney injury by regulating inflammatory response and cell apoptosis. Cell Death & Disease 2022, 13, 333. doi:10.1038/nrd2589

Horakova, O.; Medrikova, D.; Van Schothorst, E.M.; Bunschoten, A.; Flachs, P.; Kus, V.; Kuda, O.; Bardova, K.; Janovska, P.; Hensler, M. Preservation of metabolic flexibility in skeletal muscle by a combined use of n-3 PUFA and rosiglitazone in dietary obese mice.PLoS One 2012, 7(8),e43764. doi: 10.1371/journal.pone.0043764.

Iskandar, A.; Sriwedari, K.; Wulanda, I.A.; Indra, M.R.; Firani, N.K.; Olivianto, E. The level of chemerin and adipocyte fatty acid binding protein in Toxoplasma gondii seropositive obese individuals. Asian Pacific Journal of Tropical Biomedicine 2017, 7, 107-109. https://doi.org/10.1016/j.apjtb.2016.11.017

Salgado, A.L.F.d.A.; Carvalho, L.d.; Oliveira, A.C.; Santos, V.N.d.; Vieira, J.G.; Parise, E.R. Insulin resistance index (HOMA-IR) in the differentiation of patients with non-alcoholic fatty liver disease and healthy individuals. Arquivos de gastroenterologia 2010, 47, 165-169. doi: 10.1590/s0004-28032010000200009

Kannan, G.; Moldovan, K.; Xiao, J.-C.; Yolken, R.H.; Jones-Brando, L.; Pletnikov, M.V. Toxoplasma gondii strain-dependent effects on mouse behaviour. Folia parasitologica 2010, 57, 151. doi: 10.14411/fp.2010.019

Thjodleifsson, B.; Olafsson, I.; Gislason, D.; Gislason, T.; Jögi, R.; Janson, C. Infections and obesity: A multinational epidemiological study. Scandinavian journal of infectious diseases 2008, 40, 381-386.doi:10.1080/00365540701708293

Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of clinical investigation 2003, 112, 1796-1808. doi: 10.1172/JCI19246

Arkan, M.C.; Hevener, A.L.; Greten, F.R.; Maeda, S.; Li, Z.-W.; Long, J.M.; Wynshaw-Boris, A.; Poli, G.; Olefsky, J.; Karin, M. IKK-β links inflammation to obesity-induced insulin resistance. Nature medicine 2005, 11, 191-198.doi:10.1038/nm1185

Thomas, D.D.; Corkey, B.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: an early indicator of metabolic dysfunction. Journal of the Endocrine Society 2019, 3, 1727-1747. doi:10.1210/js.2019-00065

Tahapary, D.L.; Fatya, A.I.; Kurniawan, F.; Marcella, C.; Rinaldi, I.; Tarigan, T.J.; Harbuwono, D.S.; Yunir, E.; Soewondo, P.; Purnamasari, D. Increased intestinal-fatty acid binding protein in obesity-associated type 2 diabetes mellitus. Plos one 2023, 18, e0279915. doi: 10.1371/journal.pone.0279915

Alvite, G.; Esteves, A. Lipid binding proteins from parasitic platyhelminthes. Frontiers in physiology. 2012 ,12;3:363https://doi.org/10.3389/fphys.2012.00363

Pórfido, J. L; Herz, M.; Kiss, F.; Kamenetzky, L.; Brehm, K.; Rosenzvit, M.C.; Córsico, B.; Franchini, G.R. Fatty acid-binding proteins in Echinococcus spp.: the family has grown. Parasitology research. 2020,119:1401-8. https://doi.org/10.1007/s00436-020-06631-5

Lombardo, J.F; Pórfido, J.L; Sisti, M.S.; Giorello, A.N.; Rodríguez, S.; Córsico, B.; Franchini, G.R. Function of lipid binding proteins of parasitic helminths: still a long road. Parasitology Research 2022,12,(4:1117-29. https://doi.org/10.1007/s00436-022-07463-1

Huang, L.; Hu, Y.; Huang, Y.; Fang, H.; Li, R.; Hu, D.; Li, W.; Li, X.; Liang, C.; Yu, X. Gene/protein expression level, immunolocalization and binding characteristics of fatty acid binding protein from Clonorchis sinensis (Cs FABP). Molecular and Cellular Biochemistry 2012, 363:367-76. https://doi.org/10.1007/s11010-011-1189-3

Tang, C.L.; Li, Y.H.; Dai, W.Q.; Zhu, Y.W.; Wu, Z.X.; Li, Y.; Zuo, T. Gene Expression Level, Immunolocalization, and Function of Fatty Acid-Binding Protein from Schistosoma japonicum. The Journal of Parasitology 2021, 107(4), 529-36. https://doi.org/10.1645/19-42.