Estimating the Median Lethal Dose of Breast Cancer with Modified Weibull Statistical Model
Main Article Content
Abstract
In this paper, based on a linear relationship between the natural logarithms of the scale parameter and dose, nineteen models are constructed using the modified Weibull statistical model to describe the relationship of dose-response and time for multivariate dual-response life experiments with two-replicate. The real biological data set is considered to evaluate the response rates of breast cancer cells treated with the therapeutic zinc selenide prepared in two different ways (physically and environmentally/organically). The unknown parameters are estimated using two estimation methods. The mean square error is used to select the best model. The median lethal dose is then determined on the basis of a new formula at successive times. The best models for each estimation method show that the experiment's replications are unimportant and that the median lethal dose estimates exhibit a decreasing dose-time relationship over the days.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
Received
Accepted
Published Online First
References
Weibull, W.A. Statistical Distribution Function of Wide Applicability. Journal of Applied Mechanics.
1951, 18, 293-296. https://doi.org/10.1115/1.4010337.
Murthy, D.N.P.; Xie, M.; Jiang, R. Weibull Models; John Wiley & Sons. 2004; ISBN 978-0-471-36092-6. https://doi.org/10.1002/047147326X.
Schneider, U.; Radonic, S.; Besserer, J. Tumor Volume Distributions Based on Weibull Distributions of Maximum Tumor Diameters. Applied Sciences. 2023, 13, 10925. https://doi.org/10.3390/app131910925.
Almalki, S.J.; Yuan, J.A. New Modified Weibull Distribution. Reliability Engineering and System Safety 2013, 111, 164-170. https://doi.org/10.1016/j.ress.2012.10.018.
Lai, C.D.; Xie, M.; Murthy, D.N.P. A Modified Weibull Distribution. IEEE Transactions on Reliability. 2003, 52, 33-37. https://doi.org/10.1109/TR.2002.805788.
Murthy, D.N.P.; Bulmer, M.; Ecclestion, J.A. Weibull Model Selection for Reliability Modeling. Reliability Engineering and System Safety. 2004, 86, 257-267. https://doi.org/10.1016/j.ress.2004.01.014.
Carrasco, J.M.F.; Ortega, E.M.M.; Cordeiro, G.M.A. Generalized Modified Weibull Distribution for Life Time Modeling. Computational Statistics and Data Analysis 2008, 53, 450-462. https://doi.org/10.1016/j.csda.2008.08.023.
Alizadeh, M.; Khan, M.N.; Rasekhi, M.; Hamedani, G.G. A New Generalized Modified Weibull Distribution. Mathematical and Statistical Science Faculty Research and Publications. 2021, 9, 17-34. https://doi.org/10.19139/soic-2310-5070-1014.
Jiang, D.; Han, Y.; Cui, W.; Wan, F.; Yu, T.; Song, B. An Improved Modified Weibull Distribution Applied to Predict the Reliability Evolution of an Aircraft Lock Mechanism. Probabilistic Engineering Mechanics. 2023, 72, 103449. https://doi.org/10.1016/j.probengmech.2023.103449.
Ghazal, M.G.M. A New Extension of the Modified Weibull Distribution With Applications for Engineering Data. Probabilistic Engineering Mechanics. 2023, 74, 103523. https://doi.org/10.1016/j.probengmech.2023.103523.
Adam, A.A.H.; Sazak, H.S. Estimation of the Parameters of the Modified Weibull Distribution with Bathtub–Shaped Failure Rate Function. Pakistan Journal of Statistics and Operation Research. 2023, 19, 765-776. http://doi.org/10.18187/pjsor.v19i4.4185.
Maswadah, M.; Seham, M. Statistical Inference for the Modified Weibull Model Based on the Generalized Order Statistics. Journal of Statistics Applications and Probability. 2023, 12, 1-6. http://doi.org/10.18576/jsap/120202.
Al-Noor, N.H.; Hussein, I.H.; Jasim, S.A. Estimate the Median Lethal Dose of a Biological Experiment with Modified Weibull Model. AIP Conference Proceedings. 2023, 2839. https://doi.org/10.1063/5.0167681.
Jasim, S.A.; Al-Noor, N.H.; Hussein, I.H. Statistical Model for Estimating the Median Lethal Dose of Breast Cancer. AIP Conference Proceedings. 2023, 2977. https://doi.org/10.1063/5.0182313.
Erhirhie, E.O.; Ihekwereme, C.P.; Ilodigwe, E.E. Advances in Acute Toxicity Testing: Strengths, Weaknesses and Regulatory Acceptance. Interdiscip Toxicol. 2018, 11, 5-12. https://doi.org/10.2478/intox-2018-0001.
Lei, C.; Sun, X. Comparing Lethal Dose Ratios Using Probit Regression with Arbitrary Slopes. BMC Pharmacology and Toxicology. 2018, 19, 1-10. https://doi.org/10.1186/s40360-018-0250-1
Labelle, C.; Marinier, A.; Lemieux, S. Enhancing the Drug Discovery Process: Bayesian Inference for the Analysis and Comparison of Dose-Response Experiments. Bioinformatics. 2019, 35, 464-473. https://doi.org/10.1093/bioinformatics/btz335.
Eisa, S.G.; Hassan, M.K.; Abdel-Hamid, N.M.; Ahmed, A.A. Evaluation of the Acute Hepatotoxicity of Medemia Argun Seed's Extract by Determining of LD50 Value and Dose Response Curve. Alfarama Journal of Basic and Applied Sciences 2020, 1, 90-98. https://doi.org/10.21608/ajbas.2020.20713.1005.
Jesu, R.De; Vicuña-Fernández, N.; Osorio, A.; Martucci, D.; Pozo, L.; García, C.; Jimenez, W. Determination of Medium Lethal Dose (LD50) and Acute Toxicity of Formulation Cytoreg, An Ionic Mixture of Strong and Weak Acids. Latin American Journal of Development. 2021, 3, 1121-1126. https://doi.org/10.46814/lajdv3n3-010.
Hussein, I.H.; Abood, H. J. Estimate the Median Lethal Dose Using the Exponential Model. Journal of Physics: Conference Series. 2021, 1963 012021, 1-11. https://doi.org/10.1088/1742-6596/1963/1/012021.
Tekuri, S.K.; Bassaiahgari,P.; Gali, Y.; Amuru, S.R.; Pabbaraju, N. Determination of Median Lethal Dose of Zinc Chloride in Wistar Rat. Advance in Animal and Veterinary Sciences. 2021, 9, 393-399. https://doi.org/10.17582/journal.aavs/2021/9.3.393.399.
Bouabdallah, N.; Mallem, L.; Abdennour, C.; Chouabbia, A.; Tektak, M. Toxic Impacts of a Mixture of Three Pesticides on the Reproduction and Oxidative Stress in Male Rats. Journal of Animal Behaviour and Biometeorology. 2022, 10, 1-9.https://doi.org/10.31893/jabb.22004.
Ghasemi Soloklui, A.A.; Kordrostami, M.; Karimi, R. Determination of Optimum Dose Based of Biological Responses of Lethal Dose (LD25,50,75) and Growth Reduction (GR25,50,75) in ‘Yaghouti’ Grape Due to Gamma Radiation. Scientific Reports. 2023, 13, 1-13. https://doi.org/10.1038/s41598-023-29896-z.
Aliyu, M.; Yaro, A.H.; Chedi, B.A.Z.; Salisu, A.I. Median Lethal Dose (LD50) Evaluation of Some Polyherbal Formulations Marketed in Northern Nigeria. International Journal of Herbs and Pharmacological Research. 2015, 4, 18-23. https://api.semanticscholar.org/CorpusID:70894138.
Saganuwan, S.A. The New Algorithm for Calculation of Median Lethal Dose (LD50) and Effective Dose Fifty (ED50) of Micrarus Fulvius Venom and Anti-Venom in Mice. International Journal of Veterinary Science and Medicine. 2016, 4, 1-4. https://doi.org/10.1016/j.ijvsm.2016.09.001.
Begosh–Mayne, D.; Kumar, S.S.; Toffel, S.; Okunieff, P.; Ó Dell, W. The Dose–Response Characteristics of Four NTCP Models: Using a Novel CT–Based Radiation–Induced Lung Density Changes. Scientific Reports. 2020, 10, 10559. https://doi.org/10.1038/s41598-020-67499-0.
Zhang, Y.; Huang, Y.; Liang, J.; Zhou, H. Improved Up-and-Down Procedure for Acute Toxicity Measurement with Reliable LD50 Verified by Typical Toxic Alkaloids and Modified Karber Method. BMC Pharmacology and Toxicology. 2022, 23, 2-11. https://doi.org/10.1186/s40360-021-00541-7.
Wang, Y.; Yang, X.; Xlao, J.; Wei, S.; Su, Y.; Chen, X.; Huang, T.; Shan, Q. Determination of the Median Lethal Dose of Zinc Gluconate in Mice and Safety Evaluation. BMC Pharmacology and Toxicology. 2024, 25, 2-11. https://doi.org/10.1186/s40360-024-00736-8.
Bell, G. Replicates and Repeats. BMC Biology. 2016, 14, 1-2. https://doi.org/10.1186/s12915-016-0254-5.
Abdalameer, N.K. Spectroscopic Study of Plasma Parameters Produced Different Method to Synthesis ZnSe Nanoparticles. Ph.D. Dissertation 2021, University of Baghdad.