Effect of Some Drugs (Painkiller and Anti-Inflammatory) on Antibiotic Resistance Genes (vim, imp, ndm, oxa48 and aac(6)) in Proteus Mirabilis

Main Article Content

Mohsin Rasheed Mohsin
Bahaa Abdullah Laftaah AL-Rubaii

Abstract

     Proteus mirabilis is gram-negative bacteria that is considered responsible for urinary tract infections (UTIs), especially catheter-associated urinary tract infections. The samples of urine (119) were collected from Baghdad hospitals. Proteus spp was recognized by morphology, the Vitek-2 compact system, and the 16SrRNA gene. Antibiotic susceptibility test was also done using the vitek-2 system. The antibiotic resistance genes vim, imp, ndm, oxa48 and aac(6) were amplified using PCR. The Results were shown out of 35 isolates belonging to P. mirabilis, they appeared highest resistance against minocycline, ticarcillin, trimethoprim/sulfamethoxazole, and ticarcillin/ clavulanic with 71.40 %, 68.57%, 65.70% and 57.10% respectively; while, they were sensitive to meropenem and piperacillin/ tazobactam with 2.85 %and 5.57% respectively. Seven isolates were classified as XDR, and the two strongest isolates of them were selected (no 90 and no 99). Only The aac(6) gene  appeared positive band at size (395bp) in both isolates while other genes(vim,imp,ndm,oxa48) were not detected in both of the isolates. RT-PCR revealed a down-regulation at 0.015 and 0.485 folding change in gene expression of the aac(6) gene under the effect of olfen and dexamethasone; while it showed Up-regulation at 3.245, 3.55 and 3.22 folding change in gene expression under the effect of paracetemol, piroxicam and nefopam respectively. From the above finding, concluded that each of these drugs a had different effect on the aac(6) gene whether it is up regulation or down regulation. wither it up regulation or down regulation

Article Details

How to Cite
[1]
Mohsin, M.R. and AL-Rubaii, B.A.L. 2024. Effect of Some Drugs (Painkiller and Anti-Inflammatory) on Antibiotic Resistance Genes (vim, imp, ndm, oxa48 and aac(6)) in Proteus Mirabilis. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 19–27. DOI:https://doi.org/10.30526/37.3.3452.
Section
Biology

Publication Dates

References

Armbruster, C.E.; Mobley, H.L.; Pearson, M.M. Pathogenesis of Proteus mirabilis infection. EcoSal Plus 2018, 8(1) 10.1128/ecosalplus.ESP-0009-2017. https://doi.org/10.1128/ecosalplus.ESP-0009-2017.

Coker, C.; Poore, C.A.; Li, X.; Mobley, H.L. Pathogenesis of Proteus mirabilis urinary tract infection. Microbes and infection 2000, 2(12), 1497-505. DOI: 10.1016/s1286-4579(00)01304-6.

Gonzales G. Proteus Infections. eMedicine from WebMD. Last edited. 2006, 2.

Matthews, S.J.; Lancaster, J.W. Urinary tract infections in the elderly population. The American Journal of Geriatric Pharmacotherapy 2011, 9(5), 286-309. DOI: 10.1016/j.amjopharm.2011.07.002.

Papazafiropoulou, A.; Daniil, I.; Sotiropoulos, A.; Balampani, E.; Kokolaki, A.; Bousboulas, S.; Konstantopoulou, S.; Skliros, E.; Petropoulou, D.; Pappas, S. Prevalence of asymptomatic bacteriuria in type 2 diabetic subjects with and without microalbuminuria. BMC Research Notes 2010, 3, 1-5. DOI: 10.1186/1756-0500-3-169.

Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and urinary tract infections. Microbiology Spectrum 2015, 3(5), 10.1128/microbiolspec.UTI-0017-2013. DOI: 10.1128/microbiolspec.UTI-0017-2013

Jacobsen, S.M.; Stickler, D.J.; Mobley, H.L.; Shirtliff, M.E. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical Microbiology Reviews 2008, 21(1), 26-59. DOI: 10.1128/CMR.00019-07.

O'Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clinical Microbiology Reviews 2000, 13(4), 534-46. DOI: 10.1128/cmr.13.4.534-546.2000.

Norsworthy, A.N.; Pearson, M.M. From catheter to kidney stone: the uropathogenic lifestyle of Proteus mirabilis. Trends in Microbiology 2017, 25(4), 304-315. DOI: 10.1016/j.tim.2016.11.015.

Stock, I. Natural antibiotic susceptibility of Proteus spp., with special reference to P. mirabilis and P. penneri strains. Journal of Chemotherapy 2003, 15(1),12-26. DOI: 10.1179/joc.2003.15.1.12.

Song, W.; Kim, J.; Bae, I.K.; Jeong, S.H.; Seo, Y.H.; Shin, J.H.; Jang, S.J.; Uh, Y.; Shin, J.H.; Lee, M.K.; Lee, K. Chromosome-encoded AmpC and CTX-M extended-spectrum β-lactamases in clinical isolates of Proteus mirabilis from Korea. Antimicrobial Agents and Chemotherapy 2011, 55(4), 1414-9. DOI: 10.1128/AAC.01835-09.

Philippon, A.L.; Labia, R.O.; Jacoby, G.E. Extended-spectrum beta-lactamases. Antimicrobial Agents and Chemotherapy 1989, 33(8), 1131-1136. DOI: 10.1128/AAC.33.8.1131.

Jean, S.S.; Lee, W.S.; Yu, K.W.; Liao, C.H.; Hsu, C.W.; Chang, F.Y.; Ko, W.C.; Chen, R.J.; Wu, J.J.; Chen, Y.H.; Chen, Y.S. Rates of susceptibility of carbapenems, ceftobiprole, and colistin against clinically important bacteria collected from intensive care units in 2007: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Journal of Microbiology, Immunology and Infection 2016, 49(6), 969-76. DOI: 10.1016/j.jmii.2014.12.008.

Mokracka, J.; Gruszczyńska, B.; Kaznowski, A. Integrons, β‐lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P. vulgaris. Apmis 2012, 120(12), 950-958. DOI: 10.1111/j.1600-0463.2012.02923.x

Ohno, Y.; Nakamura, A.; Hashimoto, E.; Matsutani, H.; Abe, N.; Fukuda, S.; Hisashi, K.; Komatsu, M.; Nakamura, F. Molecular epidemiology of carbapenemase-producing Enterobacteriaceae in a primary care hospital in Japan, 2010–2013. Journal of Infection and Chemotherapy 2017, 23(4), 224-229. DOI: 10.1016/j.jiac.2016.12.013.

Al-Mudallal, N.; Khudair A.; Alsakini A.; Zidane, N. Molecular Detection And Phylogenetic Analysis Of 16s Rna Gene Of Proteus Mirabilis Isolated From Different Clinical Sources In Baghdad Hospitals. Biochemical & Cellular Archives 2021, 21(2), 471. DocID: https://connectjournals.com/03896.2021.21.4711.

Al-Shamarti, M.J. Molecular Detection of Oxa-48 β-lactamase in Proteus spp. causing UTI. Journal of Pure and Applied Microbiology 2019, 13 (3), 1467-1473. https://doi.org/10.22207/JPAM.13.3.17.

Bisiklis, A.; Papageorgiou, F.; Frantzidou, F.; Alexiou‐Daniel, S. Specific detection of blaVIM and blaIMP metallo‐β‐lactamase genes in a single real‐time PCR. Clinical Microbiology and Infection 2007, 13(12), 1201-1203. DOI: 10.1111/j.1469-0691.2007.01832.x.

Alsherees, H.A.; Abdzaid, A.J.; Talib, R. Molecular study of Proteus mirabilis bacteria isolated from urine and wounds in hospitals Al-Najaf province. International Journal of Advanced Research in Bological Sciences 2016, 3(6), 99-105.

Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.

Kamil, T.D.; Jarjes, S.F. Molecular Characterization of Proteus spp. from Patients Admitted to Hospitals in Erbil City. Polytechnic Journal 2021, 11(2), 95-99. DOI: https://doi.org/10.25156/ptj.v11n2y2021.pp95-99.

Ahmed, D.A. Prevalence of Proteus spp. in some hospitals in Baghdad City. Iraqi Journal of Science 2015, 56(1), 6656-6672. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/10376.

Martins, A.M.; Marto, J.M.; Johnson, J.L.; Graber, E.M. A review of systemic minocycline side effects and topical minocycline as a safer alternative for treating acne and rosacea. Antibiotics 2021, 10(7), 757. DOI: 10.3390/antibiotics10070757.

Serry, F.M.; Gomaa, S.E.; Abbas, H.A. Antimicrobial resistance of clinical Proteus mirabilis isolated from different sources. Zagazig Journal of Pharmaceutical Sciences 2018, 27(1), 57-63. DOI: 10.21608/ZJPS.2018.38156.

Al-Jumaily, E.; Zgaer, S.H. Multidrug resistant Proteus mirabilis isolated from urinary tract infection from different hospitals in Baghdad City. International Journal of Current Microbiology and Applied Sciences 2016, 5(9), 390-399. http://dx.doi.org/10.20546/ijcmas.2016.509.041.

Aslam, B.; Rasool, M.; Muzammil, S.; Siddique, A.B.; Nawaz, Z.; Shafique, M.; Zahoor, M.A.; Binyamin, R.; Waseem, M.; Khurshid, M.; Arshad, M.I. Carbapenem resistance: Mechanisms and drivers of global menace. IntechOpen, 2020. DOI: 10.5772/intechopen.90100.

Fursova, N.K.; Astashkin, E.I.; Knyazeva, A.I.; Kartsev, N.N.; Leonova, E.S.; Ershova, O.N.; Alexandrova, I.A.; Kurdyumova, N.V.; Sazikina, S.Y.; Volozhantsev, N.V.; Svetoch, E.A. The spread of bla OXA-48 and bla OXA-244 carbapenemase genes among Klebsiella pneumoniae, Proteus mirabilis and Enterobacter spp. isolated in Moscow, Russia. Annals of clinical Microbiology and Antimicrobials. 2015, 14(1), 1-9. DOI: 10.1186/s12941-015-0108-y.

Vourli, S.; Tsorlini, H.; Katsifa, H.; Polemis, M.; Tzouvelekis, L.S.; Kontodimou, A.; Vatopoulos, A.C. Emergence of Proteus mirabilis carrying the blaVIM-1 metallo-β-lactamase gene. Clinical Microbiology and Infection 2006, 12(7), 691-694. DOI: 10.1111/j.1469-0691.2006.01489.x.

Wieczorek, P.; Sacha, P.; Hauschild, T.; Ostas, A.; Kłosowska, W.; Ratajczak, J.; Tryniszewska, E. The aac (6') Ib gene in Proteus mirabilis strains resistant to aminoglycosides. Folia histochemica et Cytobiologica 2008, 46(4), 531-533. DOI: 10.2478/v10042-008-0068-6

l-Oqaili, N.A.; Al-Shebli, M.K.; Almousawi, A.N. Molecular Characterizations of Aminoglycoside Modifying Enzymes of Proteus mirabilis Isolated From Patients in Al-Qadisiyah Governorate. Research Journal of Pharmacy and Technology 2018, 11(7), 2809-2813. DOI: 10.5958/0974-360X.2018.00518.8.

Abbas, H.A.; Atallah, H.; El-Sayed, M.A.; El-Ganiny, A.M. Diclofenac mitigates virulence of multidrug-resistant Staphylococcus aureus. Archives of Microbiology 2020, 202, 2751-2760. DOI: 10.1007/s00203-020-01992-y.