Using Thomas-Fermi Formula of Level Density Parameter to Find New Single Particle Level Density Formula

Main Article Content

Hadeer K. Mohammed
Ali D. Salloum

Abstract

The level density is a parameter that has great importance in the theoretical nuclear calculation, and it is considered a key of many theoretical studies, therefore, the level density in pre-equilibrium reaction or what is the so-called accurate partial level density PLD has been studied. The partial  level density PLD  used  in pre-equilibrium reactions is dependent on the parameter called single particle level density which can be calculated by two methods either using the equidistant spacing model (ESM) or non-equidistant spacing model (non-ESM)  In this study, the parameter   is estimated by using the relation between the level density parameter  and  based on Ericson and Williams's formulas (  )  is substituted from the Thomas-Fermi formula and the new  was substituted one-component Ericson's formula, two-components  Ericson's formula, Williams's formula, spin formula, and surface formula.  The results show that the PLD estimated from one-component Ericson's formula gives the best agreement with the experimental data between 4 MeV to 5 MeV.

Article Details

How to Cite
[1]
Hadeer K. Mohammed and Ali D. Salloum 2024. Using Thomas-Fermi Formula of Level Density Parameter to Find New Single Particle Level Density Formula. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 154–161. DOI:https://doi.org/10.30526/37.4.3455.
Section
Physics

Publication Dates

Received

2023-05-02

Accepted

2023-06-07

Published Online First

2024-10-20

References

Guttormsen, M.; Jurado, B.; Wilson, J.N.; Aiche, M.; Bernstein, L.A. Constant-Temperature Level Densities in the Quasi continuum of Th and U Isotopes. Physical Review C—Nuclear Physics 2013, 88(2), 024307.‏ https://doi.org/10.13251/DotB.2023.183.917

Pandit, D.; Bhattacharya, S.; Mondal, D.; Roy, P.; Banerjee, K.; Mukhopadhyay, S. Experimental Signature of Collective Enhancement in Nuclear Level Density. Physical Review C. 2018, 97(4), 041301. https://doi.org/10.17751/DwNB.2023.183.933

Alwan, T.A.; Hameed, B.S. Study the Nuclear Structure of Some Even-Even Ca Isotopes Using the Microscopic Theory. Baghdad Science Journal 2023, 20(1), 235-245.

Mohammad, J.F.; Salloum, A.D.; Al-Jabbar, H.A. Effects of the Changes in the Neutron Number of Isotonic Nuclei on the Tow-Component Partial Level Density Formula Corrected for Pairing in Pre-Equilibrium Reactions. Iraqi Journal of Science 2022, 63(5), 1977-1981.‏ https://doi.org/10.15251/DJNB.2023.183.927

Bĕták E, Hodgson P. Particle-Hole State Density in Pre-Equilibrium Nuclear Reactions. University of Oxford, available from CERN Libraries, Geneva, report ref. 1998, 2, 483-524. OUNP-98-02. https://doi.org/10.13351/Drt.2023.183.9017

Popa, G.; Baker, F. Systematics of Nuclear Level Densities. Nuclear Theory. 2014, 33(14),187-192.‏ https://doi.org/10.15251/DrsB.2023.133.347

Shafik, S.S.; Flaiyh, G.N.; Ali, A.M. Nuclear Level Density Parameter of 161−168Er and 204− 210Bi Deforme Nuclei. Al-Nahrain Journal of Science 2014, 17(3), 81-87.

Jasim, M.H.; The Effect of Deformation Parameter of Heavy Nuclei on Level Density Parameter. Iraqi Journal of Physics 2014, 12(25), 38-43.‏ https://doi.org/10.13451/DuyB.2023.183.12

Abdullah, A.M.; Salloum, A.D. A Comparison Between the Theoretical Cross Section Based on the Partial Level Density Formulae Calculated by the Exciton Model with the Experimental Data for Au Nucleus. At energy. 2020, 78(198), 79-88. https://doi.org/10. 15251/DerB.2023.183.457

Karampagia, S.; Zelevinsky, V. Nuclear Shell Model and Level Density. International Journal of Modern Physics E 2020, 29(6), 2030005. https://doi.org/10.15251/SERB.2023.543.917

Shil, R.; Banerjee, K.; Roy, P.; Sadhukhan, J.; Rana, T.K.; Mukherjee G. Isospin Dependence of Nuclear Level Density at A≈ 120 Mass Region. Physics Letters B. 2022, 10, 831:137145.

Astm, C. R23 Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware. Appl. Phys. 2018, 21(2), 23-34.

Astm, C. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. Appl. Phys. 2022, 11(12), 43-64.

Neamah, Z.J.; Mahdi, S.H.; Effect of zirconia addition on thermal and mechanical properties of poly-methyl methacrylate composites, Digest Journal of Nanomaterials and Biostructures 2023, 18, 927-932. https://doi.org/10. 15251/DJNB.2023.183.927

Lazaratou, C.V.; Vayenas, D.V.; Papoulis, D. The role of clays, clay minerals and clay-based materials for nitrate removal from water systems: A review Applied Clay Science 2020 185, 105377. https://doi.org/10.1016/j.clay. 2019.105377

Ken, L. X-ray Diffraction, A program to analyze energy and angular dispersive, X-ray diffraction patterns. Appl. Phys. 1992, 5(2), 45-56.

Astm, A. International Center for Diffraction Data, FileTM & Related Products. Jour. Phys. 2009, 2(11), 33-45.

Yasushi, S.; Norihiko, K. Quantitative Analysis of Tridymite And Cristobalite Crystallized In Rice Husk Ash By Heating. Industrial Health 2004, 42, 277–285

Laurence N.W. Recommended abbreviations for the names of clay minerals and associated phases, Clay Minerals, 2020, 55, 261–264. https://doi:10.1180/clm.2020.30

Lenz, S.; Birkenstock, J.; Fischer, L.A.; Schüller, W.; Schneider, H.; Fischer, R.X. Natural mullites: chemical composition, crystal structure, and optical properties, Eur. J. Mineral. 2019, 31, 353–367, https://doi.org/10.1127/ejm/2019/0031-2812

Igami, Y.; Ohi, S.; Kogiso, T.; Furukawa, N.; Miyake, A. High-temperature structural change and microtexture formation of sillimanite and its phase relation with mullite, American Mineralogist 2019, 104, 1051-1061.https://doi.org/10.2138/am-2019-6732

Israa, M.R.; Yousif, I.M.; Takialdin, A.H.; Interactions Investigation of New Composite Material Formed from Bauxite and Melamine-Urea Formaldehyde Copolymer. Ibn Al-Haitham Jour. for Pure & Appl. Sci. 2016, 29(1), 181–192. https://doi.edu.iq/index.php/j/article/view/57

Mingye, W.L.; Ma, B.L.; Wenjian, Z.; Hao, Z.; Guangshun, W.; Yudong, H.; Guojun, S. One-step generation of silica particles onto graphene oxide sheets for superior mechanical properties of epoxy composite and scale application. Composites Communications 2020, 22, 1–7. https://doi.10.science /article/abs/pii/S2452213920302424.

Xiaomin, Y.; Bo, Z.; Xun, C.; Jianjun, L.; Kun, Q.; Junwei, Yu. Improved interfacial adhesion in carbon fiber/epoxy composites through a waterborne epoxy resin sizing agent. Journal of Applied Polymer Science 2017, 134(17), 1–11, https://doi:10.1002/app.44757.10.1002.

Adil, I.K.; Dhefaf, H.B.; Zainab, S.A. The Effect Of Phoenix Dactylifera L. Pinnae Reinforcement On The Mechanical And Thermal Properties Of Polymer Composite. Journal of the college of basic education 2019, 104(25), 339–349. https://doi:index.php/cbej/article /view/4654.

Radhika, W.; Niharika, T.; Ashok, M.R. Mechanical and curing behavior of epoxy composites reinforced with polystyrene-graphene oxide (PS-GO) core-shell particles. Composites Part C: Open Access 2021, 5, November, 1–13, https://doi:10.1016/j.jcomc.2021.100128.

Zhaofu, W.; Rong, Qi.; Jin, W.; Shuhua, Q. Thermal conductivity improvement of epoxy composite filled with expanded graphite. Ceramics International 2015, 41, 13541–13546. https://doi:10. 1016/j.ceramint.2015.07.148.

Sravanthi, K.; Mahesh, V.; Rao, B.N. Influence of carbon Particle in Polymer matrix composite over mechanical Properties and tribology behavior. Arch. Metall. Mater 2019, 66(4), 1171–1178. https://doi.bibliotekanauki.pl/articles/2049147.

Abdulhameed, R.A. Study on adhesion wear damage done on the hybrid composite Novolac under the experimental variables. Energy Procedia 2019, 157(1), 644–654. https://doi.10. S1876610218311998.

Mustafa, B.H.; Salah, N.A.; Qabas, R. An Investigation of Tensile and Thermal Properties of Epoxy Polymer Modified by Activated Carbon Particle. IOP Conference Series: Materials Science and Engineering 2021, 1094, 1, 1–9, https://doi:10.1088/1757-899x/1094/1/012164.

Nuo, X.; Chunrui, L.; Ting, Z.; SiQiu, Y.; Liu, D.Z.; Dingshu, X.; Guocong, L. Enhanced mechanical properties of carbon fiber/epoxy composites via in situ coating-carbonization of micron-sized sucrose particles on the fiber surface. Materials and Design 2021, 200, 1–10, https://doi:10.1016 /j.matdes. 2021.109458.