Treatment Of Epoxy Surface by DBD Cold Atmospheric

Main Article Content

Noor Qassem Mohammed
Hamid H Murbat

Abstract

The current study focuses on the surface modification of an air dielectric barrier discharge (DBD) at atmospheric pressure on a polymer (epoxy). Atomic force microscopy (AFM), Hardness and Thermo-gravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC) were used to characterize the material. Plasma was used to expose the epoxy sample for (0, 10, 20, and 30 min). The AFM study shows an increase in the time of plasma treatment and an increase in the parameter of roughening, in which the surface of the material is roughened by the plasma treatment. This plasma-induced morphological modification of the epoxy surface will also contribute to enhancing the wettability. In the DSC test, the stability of the glass transition temperature was maintained until 20 minutes of plasma treatment. Still, at 30 minutes of plasma treatment, the glass transition temperature decreased, while the thermal stability of all exposure times in plasma was unaffected for the TGA test. It was found that epoxy improves its hardness after being treated with plasma at 10, 20, and 30 min, and the best plasma curing time was at 10 minutes. The hardness of the exposed epoxy to plasma remains at 20 and 30 min more than that of the control epoxy. The increase in the hardness of the epoxy after being treated with plasma is because it is a thermosetting material. The hardness of the epoxy improves when treated with plasma.

Article Details

How to Cite
[1]
Qassem Mohammed, N. and H Murbat , H. 2024. Treatment Of Epoxy Surface by DBD Cold Atmospheric. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 2 (Apr. 2024), 203–214. DOI:https://doi.org/10.30526/37.2.3466.
Section
Physics

Publication Dates

References

Sikora, A. D.; Czylkowski, B. H.; Magdalena, M. D.; Marcin, L.; Mirosław, D.; Mariusz, J.; Surface modification of PMMA polymer and its composites with PC61BM fullerene derivative using an atmospheric pressure microwave argon plasma sheet. Scientific Reports 2021, 11, 1, 92-101. https://doi.org/10.1038/s41598-021-88553-5

Vijay, N.; Ashok, K.; Atmospheric Non-Thermal Plasma Sources. International Journal of Engineering (IJE) 2008, 12, 3, 23-36, DOI: 10.5772/18407

Thisara, G. A.; Amarasinghe, D. A.; Atmospheric Cold Plasma to Improve Printability of Polyethylene Terephthalate. Appl. Phys. 2021, 97, 1, 23-34. https://doi.org/10.1063/5.0196636

Boyd, I. W.; Zhang, Z. Y.; Kogelschatz, U.; Development and applications of UV excimer lamps, Photo-Excited Processes, Diagnostics and Applications. A. Peled, Ed. Kluwer Academic Netherlands 2003, 23, 4, 161-199. https://doi.org/10.1016/S0168-583X%2896%2900538-1

Sandanuwan, T.; Attygalle, D.; Amarasinghe, S.; Weragoda, S. C.; Ranaweera, B.; Rathnayake, K.; Alankara, W.; Shelf Life Extension of Cavendish Banana Fruit Using Cold Plasma Treatment. Proc. Moratuwa Eng. Res. Conf 2020, 12, 5, 182–186. https://doi.org/ 10.1109/MERCon50084.2020.9185237

Sandanuwan, T.; Hendeniya, N.; Amarasinghe, D. A.; Attygalle, D.; Weragoda, S.; The effect of atmospheric pressure plasma treatment on wetting and absorbance properties of cotton fabric. Mater. Today Proc. 2021, 45, 6, 5065–5068. https://doi.org/10.1016/J.MATPR.2021.01.573

Szafran, K.; Surface Properties of the Polyethylene Terephthalate (PET) Substrate Modified with the Phospholipid-Polypeptide-Antioxidant Films: Design of Functional Biocoatings. Pharmaceutics 2022, 14, 12, 28-35. http://dx.doi.org/10.3390/pharmaceutics14122815

Sim, J.; Youngjeong, K.; Byung, J. K.; Yong, H. P.; Young, C. L.; Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers Mag. 2020, 12, 1, 79- 88. https://doi.org/10.3390/polym12010079

Fang, Z.; Yang, J.; Liu, Y.; Shao, T.; Zhang, C.; Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet. IEEE Trans. Plasma Sci. 2013, 41, 3, 1627–1634. https://doi.org/10.1039/C8EE02656D

Liu, C.; Cui, N.; Brown, N. M.; Meenan, B. J.; Effects of DBD plasma operating parameters on the polymer surface modification. Surface and Coatings Technology 2004, 12, 185, 311-320. https://doi.org/10.1016/J.SURFCOAT.2004.01.024

Kostov, K. D.; Dos Santos, A. L.; Honda, R. Y.; Nascente, P. A.; Kayama, M. E.; Algatti, M. A.; Mota, R. P.; Treatment of PET and PU polymers by atmospheric pressure plasma generated in dielectric barrier discharge in air. Surface and Coatings Technology 2010, 204, 18, 3064-3068. https://doi.org/10.1016/J.SURFCOAT.2010.02.008

Al-Halim, I. Z.; Akram, A. M.; Study of some thermal properties and activation energy of epoxy resin alloys with a copper complex of acid N, N-5, 2-toluene di-malic acid. Journal of Education and Science 2013, 26, 5, 280-294. https://doi.org/10.33899/edusj.2013.163105

El-Gamal, S.; Elsayed. M.; Synthesis, structural, thermal, mechanical, and nano-scale free volume properties of novel PbO/PVC/PMMA nanocomposites. Polymer 206 2020, 12, 2, 12-29.

Gacs, J.; Epoxy mold adhesion on various plasma-treated thermoplastic polymer surfaces. The International Journal of Advanced Manufacturing Technology 2022, 120, 7, 4493-4504. https://doi.org/10.1016/j.polymer.2020.122911

Roofs, N. Q.; The Impact of Preparation Condition and Li Substitution on Bi2-x LixPb0.3Sr2Ca2Cu3O10+ δ compound. Ph.D. Thesis, University of Baghdad college of science 2014. 12, 23-34. http://dx.doi.org/10.5194/se-7-1293-2016

Kittel, C.; Introduction to solid state physics, 4th ed, John Wiley and Sons 1971. 23, 233-245.

Omar, M. A.; Elementary solid state physics. 5th ed., Addis ion-Wesley 1993. 12, 123-134.

Malandrin, G.; Perdicaro, L.M.S.; Cassinese, A.; Prigiobbo, A.; Physic 2004, 894, 408 –410

Lao, J. L.; Wang, J. H.; Wang, D. Z.; Tu, Y.; Yang, S. X.; Wu, H. L.; Physical Appl. 2000, 333 221-228. https://doi.org/10.1002/adfm.201804004

Sastry, P. V.; West, A. R.; Physical Appl. 1995, 250, 87, 23-45. https://doi.org /10.1002 /admt.201901036

Li, Y. F.; Chmaissem, Z. Z.; Sheng Physica 1995, 248, 42-54. https://doi.org/10.1016/0921-4534%2895%2900163-8

Torardi, C. C.; Subramanian, M. A.; Calabrese, J. C.; Gopolakrishnan, J.; Morrissey, K. J.; Askew, T. R.; Flippen, R. B.; Chowdhry, U.; Sleight, A. W.; Science Appl. 1988. 240, 631. https://doi.org/10.1126/science.240.4852.631

Dennis, C. B.; Elements of X-ray Diffraction. Addison-Wesley Publishing 1956, 23, 12-23.

Bunaciu, A. A.; Udristioiu, E. G.; Aboul-Enein, H. Y.; X-Ray Diffraction: Instrumentation and Applications. Critical Reviews in Analytical Chemistry 2015, 45, 4, 289–299. https://doi.org/ 10.1080/10408347.2014.949616

GalánLópez, J.; Kestens, L. A.; A multivariate grain size and orientation distribution function: derivation from electron backscatter diffraction data and applications. Journal of Applied Crystallography 2021, 54, 1, 148-162. https://doi.org/10.1107/S1600576720014909

Ihsan, A. A.; Harabbi, K. H.; Restriction of Particle Size and Lattice Strain through X-ray Diffraction Peak Broadening Analysis of ZnO Nanoparticles. Advances in Physics Theories and Applications 2015, 49, 34-45. ‏

Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G.; Comparing methods for calculating nanocrystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials 2020, 10, 9, 1-21. https://doi.org/10.3390/ma13194380

Warren, B. E.; X‐ray diffraction methods. Journal of Applied physics 1941, 12, 5, 375-384. https://doi.org/10.1063/1.1712915

Whittig, L. D.; Allardice, W. R.; X‐ray diffraction techniques. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods 1986, 5, 1, 331-362. https://doi.org /10. 2136 /SSS ABOOKSER5.1.2ED.C12

Suhir, A. J.; Harbbi, K. H.; A comparative study of Williamson-Hall method and size-strain method through Xray diffraction pattern of cadmium oxide Nanoparticle. AIP Conference Proceedings 2020, 2307, 1, 1-12. https://doi.org/10.1063/5.0033762