Development of the Properties of Zinc Polycarboxylate Cement Used as a Basis for Dental Fillings Using Zink Oxide Nanoparticles Prepared by Green Chemistry Method

Main Article Content

Noor Jabbar Hattab
Entisar Eliwi Laibi
Mohammed Mhna Mohammed

Abstract

Most dental supplies don't seem to be much of a barrier against germ infiltration. Therefore, the filling must be done with perfect caution and high antimicrobial effectiveness. When dental erosion occurs due to germs that lead to caries, a dental filling is used, creating a small microscopic space between the dental filling and the root end infiltration. This allowed the tooth to be penetrated for the second time, which was the research problem. Adding two compounds to antibacterial fillers (zinc polycarboxylate cement) made them work better: Firstly, was zinc oxide  (ZnO) that was made chemically, and secondly, was green ZnO nanoparticles that were made from orange peels and mixed with ZPCC in different amounts. The study was conducted on the formed nanocomposite using FTIR, UV-vis, FESEM, sitting time, and antibacterial measurements. The biological activity was tested using Staphylococcus aureus, Escherichia coli, and Candida albicans.

Article Details

How to Cite
Development of the Properties of Zinc Polycarboxylate Cement Used as a Basis for Dental Fillings Using Zink Oxide Nanoparticles Prepared by Green Chemistry Method. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 316-332. https://doi.org/10.30526/37.1.3470
Section
Chemistry

How to Cite

Development of the Properties of Zinc Polycarboxylate Cement Used as a Basis for Dental Fillings Using Zink Oxide Nanoparticles Prepared by Green Chemistry Method. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 316-332. https://doi.org/10.30526/37.1.3470

Publication Dates

References

Milutinović-Nikolić, A.D.; Medic, V.B.; Vuković, Z.M. Porosity of different dental luting cements. Dental Materials, 2007, 23(6), 674–678. https://doi:10.1016/j.dental.2006.06.006.

Sachdeva, H.; Sharma,N.; Sharma, A.; Shrivastava, R. Plant-extract mediated synthesis of copper – and iron- based nanoparticles for various applications. NanoWorld J., 2022, 8(S1), S162-S167. https://doi: 10.17756/nwj.2022-s1-026.

Mohammed, A.; Sulaiman, A.F. and Al-Abodi, E.E. A Review: Antibiological effect of modified silver nanoparticles using plants extract. Annals of the Romanian Society for Cell Biology,2021, 25(6),13428-13432. http://www.annalsofrscb.ro/index.php/journal/article/view/8135.

Hadi, K.; Al- Saadi, T.M. Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(4), 94–103. https://doi.org/10.30526/35.4.2872.

Emad, A. Development of dental fillings in terms of properties using silver nanoparticles and plant extracts. M.Sc. Thesis, The college of College of Education Ibn Al-Haytham for Pure Sciences–University , Iraq, 2021, 16, 943–946.

Hussein, A.; Al-Abodi, E.E. A review article: Green synthesis by using different plants to preparation oxide nanoparticles. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2023, 36(1), 246–259. https://doi.org/10.30526/36.1.2933.

Gebre, S. H.; Sendeku, M. G. New frontiers in the biosynthesis of metal oxide nanoparticles and their environmental applications: An overview. SN Applied Sciences, 2019, 1(928). https://doi.org/10.1007/s42452-019-0931-4.

AL-Abodi, E.E.; Farouk, A. preparation characterization and electrical study of new polymeric mixture (Consist of Three Polymers) nanocomposites. Journal of Physics: Conference Series, 2018, 1003(1), 012014. https://ui.adsabs.harvard.edu/link_gateway/2018JPhCS1003a2014A/doi:10.1088/1742-6596/1003/ 1/012014.

Hadi, K.; Al- Saadi, T.M. Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022, 35(4), 94–103. https://doi.org/10.30526/35.4.2872.

AL-Rubaye, H. I.; AL-Rubaye, B. k.; Al-Abodi, E. E.; Yousif, E. I. Green chemistry synthesis of modified silver nanoparticles. Journal of Physics: Conference Series, 2020, 1664(1), 012080. http://dx.doi.org/10.1088/1742-6596/1664/1/012080.

Al-Abodi, E.E; Al-Saadi, T.M.; Sulaiman, A.F.; Al-Khilfhawi, I.J. Biosynthesis of silver nanoparticles by using garlic plant Iraqi extract and study antibacterial activity",3rd Woman Scientific Conference of woman science collage-Baghdad University, 2016.

Kadhim, R. M.; Al-Abodi, E. E.; Al-Alawy, A.F. Citrate-coated magnetite nanoparticles as osmotic agent in a forward osmosis process. Desalination and Water Treatment, 2018, 115, 45–52. http://dx.doi.org/10.5004/dwt.2018.22456.

Sabbar, H.A. Adsorption of phenol from aqueous solution using paper waste. Iraqi Journal of Chemical and Petroleum Engineering 2019, 20(1), 23–29. https://doi.org/10.31699/IJCPE.2019.1.4.

Almuslamawy, H.A.; Hashim, R.A.; Aldhrub, A.H.; Mouhamad, R.S. Biosorption of pollutants in Diyala river by using Irrigated vegetables. Asian Journal of Water, Environment and Pollution,2023, 20(2),51-57. https://doi:10.3233/AJW230024.

Sulaiman, A.F.; Alwan, W.M.; Salman, S.A.; Al-Abodi, E.E.. A Comparative study of chemical compounds and anti-bacterial efficacy of different Allium Cepa plant extracts. Syst. Rev. Pharm., 2021,12(1),45-48.https://www.sysrevpharm.org/articles/a-comparative-study-of-chemical-compounds-and-antibacterial-efficacy-of-different-allium-cepa-plant-extracts.pdf.

Latif, I.; AL-Abodi, E.E.; Badri, H.D.; Al Khafagi, J. Preparation, characterization and electrical study of (carboxymethylated Polyvinyl Alcohol/ZnO) nanocomposites. American Journal of Polymer Science, 2013, 2(6), 135–140. https://doi: 10.5923/j.ajps.20120206.01.

Sadiq, Y. M.; Al-Abodi, E. E. Preparation and characterization of a new nano mixture, and its application as photocatalysis in self-assembly method for water treatment. AIP Conference Proceedings, 2019, 2190(1), 020042.

https://ui.adsabs.harvard.edu/link_gateway/2019AIPC.2190b0042S/doi:10.1063/1.5138528.

Wang, N.; Fuh, J. Y.; Dheen, S. T.; Senthil Kumar, A. Synthesis methods of functionalized nanoparticles: A Review. Bio-Design and Manufacturing 2021, 4, 379–404.

http://dx.doi.org/10.1007/s42242-020-00106-3.

Kolahalam, L. A.; Kasi Viswanath, I. V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N. Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings 2019, 18(4), 2182–2190. http://dx.doi.org/10.1016/j.matpr.2019.07.371.

Chaudhuri, S. K.; Malodia, L. Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis Gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Applied Nanoscience, 2017, 7, 501–512. https://doi.org/10.1007/s13204-017-0586-7.

Fan, L.; Tan, B.; Li, Y.; Zhao, Q.; Yuan, H.; Liu, Y.; Wang, D.; Zhang, Z. Upregulation of mir 185 promotes apoptosis of the human gastric cancer cell line MGC803. Molecular Medicine Reports, 2018, 17(2),3115-3122. https://doi: 10.3892/mmr.2017.8206.

Zheng, Y.; Fu, L.; Han, F.; Wang, A.; Cai, W.; Yu, J.; Yang, J.; Peng, F. Green biosynthesis and characterization of zinc oxide nanoparticles usingcorymbia citriodoraleaf extract and their photocatalytic activity. Green Chemistry Letters and Reviews 2015, 8(2), 59–63. https://doi.org/10.1080/17518253.2015.1075069.

Manokari, M.; Shekhawat, M.S. Green synthesis of zinc oxide nanoparticles using whole plant extracts of Cassia tora L. and their characterization. J. Sci. Achiev. 2017, 2(8), 10–16. https://jsciachv.sinaweb.net/article_80715.html.

Abdlzhra, A. F.; Abdllatief, I. A.; Alabodi, E.E.L. Preparation and characterization of silver nanoparticles and study their effect on the Electrical Conductivity of the Polymer Blend (Poly vinyle acitet. Pectin, poly Aniline). Ibn AL-Haitham Journal For Pure and Applied Science, 2016, 29(3), 379–389. https://jih.uobaghdad.edu.iq/index.php/j/article/view/736.

Anbuvannan, M.; Ramesh, M.; Viruthagiri, G.; Shanmugam, N.; Kannadasan, N. Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Materials Science in Semiconductor Processing 2015, 39, 621–628. http://dx.doi.org/10.1016/j.mssp.2015.06.005.

Raj, L.F.A.; Jayalakshmy, E. Biosynthesis and characterization of zinc oxide nanoparticles using root extract of Zingiber officinale. Oriental Journal of Chemistry 2015, 31(1), 51–56. http://dx.doi.org/10.13005/ojc/310105.

Bhuyan, T.; Mishra, K.; Khanuja, M.; Prasad, R.; Varma, A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 2015, 32, 55–61. http://dx.doi.org/10.1016%2Fj.mssp.2014.12.053.

Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide nanoparticles using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Advances 2015, 5, 4993–5003. https://doi.org/10.1039/C4RA12784F.

Abdlzhra, A.F., Abdllatief, I.A., ; Alabodi, E.E.L. Preparation and characterization of silver nanoparticles and study their effect on the electrical conductivity of the polymer blend (Poly vinyle acitet. Pectin, poly Aniline). Ibn AL-Haitham Journal For Pure and Applied Science, 2016,29(3), 379–389. https://jih.uobaghdad.edu.iq/index.php/j/article/view/736.

Thi, T.U.D; Nguyen, T.T.; Thi, Y. D.; Ta Thi, K. H.; Phan, B. T.; Pham, K. N. Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Advances 2020, 10, 23899–23907. https://doi.org/10.1039/D0RA04926C.

Emad, A.; Abodi, E.E. Anti-inflammation effects of silver nanoparticles-zinc polycarboxylate cement (AGNPS-ZPCCEM). Pakistan Journal of Medical and Health Sciences, 2022, 16(4), 943–946. https://doi.org/10.53350/pjmhs22164943.

Karakece, E. Culture media for detection of Acinetobacter baumannii selective media for detection of a Baumannii. Journal of Microbiology & Experimentation 2015, 2(3),87-90. https://doi.org/10.15406/jmen.2015.02.00046.

Mohammed, A.; Sulaiman, A.F.; Al-Abodi, E.E. A Review: Antibiological effect of modified silver nanoparticles using plants extract. Annals of the Romanian Society for Cell Biology, 2021 ,25, 13428-13432. https://annalsofrscb.ro/index.php/journal/issue/view/30.

Mohamed, F.; Sharmoukh, W.; Youssef, A. M.; Hameed, T. A. Structural, morphological, optical, and dielectric properties of pva‐pvp filled with zinc oxide aluminum‐graphene oxide composite for promising applications. Polymers for Advanced Technologies, 2021, 33(3),1009–1020. https://doi.org/10.1002/pat.5575.

Yaghobian, M., & Whittleston, G.A. Critical review of carbon nanomaterials applied in cementitious composites–a focus on mechanical properties and dispersion techniques. Alexandria Engineering Journal, 2022, 61, 3417-3433.‏ https://doi.org/10.1016/j.aej.2021.08.053.

J F Siqueira Jr, J.F.; Favieri, A.; Gahyva, S.M.; Moraes, S.R.; Lima, K.C.; Lopes, H.P. Antimicrobial activity and flow rate of newer and established root canal sealers. Journal of Endodontics, 2000, 26(5), 274–277. https://doi.org/10.1097/00004770-200005000-00005.

Sampath, S.; Sunderam, V.; Madhavan, Y.; Hariharan, N. M.; Mohammed, S. S.; Muthupandian, S.; Lawrance, A. V. Facile green synthesis of zinc oxide nanoparticles using Artocarpus hirsutus seed extract: Spectral characterization and in vitro evaluation of their potential antibacterial-anticancer activity. Biomass Conversion and Biorefinery, 2023. http://dx.doi.org/10.1007/s13399-023-04127-7.

Fakhari, S.; Jamzad, M.; Kabiri Fard, H. Green synthesis of zinc oxide nanoparticles: A comparison. Green Chemistry Letters and Reviews, 2019, 12(1), 19–24. https://doi.org/10.1080/17518253.2018.1547925.

Gao, Y.; Xu, D.; Ren, D.; Zeng, K.; Wu, X. Green synthesis of zinc oxide nanoparticles using citrus sinensis peel extract and application to Strawberry Preservation: A comparison study. LWT., 2020, 126(1), 109297. http://dx.doi.org/10.1016/j.lwt.2020.109297.

Goyal, S. Green synthesis of zinc oxide nanoparticles from plant extract: A review. International Journal of Green and Herbal Chemistry 2019, 8(2),650-659. https://doi: 10.24214/IJGHC/GC/8/3 / 6559.

Fraga, R. C.; Siqueira, J. F.; de Uzeda, M. In vitro evaluation of antibacterial effects of photo-cured glass ionomer liners and dentin bonding agents during setting. The Journal of Prosthetic Dentistry, 1996, 76(5), 483–486. https://doi: 10.1016/s0022-3913(96)90005-0.

Klink, M.J.; Laloo, N.; Leudjo Taka, A.; Pakade, V.E.; Monapathi, M.E.; Modise, J. S. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules, 2022, 27(11), 3532. https://doi.org/10.3390/molecules27113532.

Husain, W. M.; Araak, J. K.; Ibrahim, O. M. S. Green synthesis of zinc oxide nanoparticles from (Punica Granatum L) pomegranate aqueous Peel Extract. The Iraqi Journal of Veterinary Medicine, 2019, 43(2), 6–14. https://doi.org/10.30539/iraqijvm.v43i2.524.

Ibraheem, S.; Kadhim, A. A.; Kadhim, K. A.; Kadhim, I. A.; Jabir, M. Zinc oxide nanoparticles as diagnostic tool for cancer cells. International Journal of Biomaterials, 2022, 1–10. https://doi: 10.1155/2022/2807644.

Mehata, M. S. Green route synthesis of silver nanoparticles using plants/ginger extracts with enhanced surface plasmon resonance and degradation of textile dye. Materials Science and Engineering: B, 2021, 273, 115418. https://doi.org/10.1016/j.mseb.2021.115418.

Golbarg, H.; Mehdipour Moghaddam, M. J. Antibacterial potency of medicinal plants including artemisia annua and oxalis corniculata against multi-drug resistance E. Coil. BioMed Research International, 2021,1, 1–17. https://doi.org/10.1155/2021/9981915.

Ravoor, J.; Amirthalingam, S.; Mohan, T.; Rangasamy, J. Antibacterial, anti-biofilm and angiogenic calcium sulfate-nano MGO composite bone void fillers for inhibiting Staphylococcus aureus infections. Colloid and Interface Science Communications, 2020, 39, 100332. http://dx.doi.org/10.1016/j.colcom.2020.100332.

Bouchelaghem, S. Propolis characterization and antimicrobial activities against Staphylococcus aureus and candida albicans: A Review. Saudi Journal of Biological Sciences, 2022, 29(4), 1936–1946. https://doi.org/10.1016%2Fj.sjbs.2021.11.063.

Siren, E.K.; Haapasalo, M.P.; Ranta, K.; Salmi, P.; Kerosuo, E.N. Microbiological findings and clinical treatment procedures in endodontic cases selected for microbiological investigation. International Endodontic Journal, 1997, 30(2), 91–95. PMID: 10332242.

Molander, A.; Reit, C.; Dahlén, G.; Kvist, T. Microbiological status of root-filled teeth with apical periodontitis. International Endodontic Journal, 1998, 31(1), 1–7. PMID: 9823122.

Salman, R. A. Histopathological Effect of Zinc Oxide Nanoparticles on Kkidney and Liver Tissues in Albino Male Mice. Ibn AL-Haitham Journal For Pure and Applied Science, 2018,31(1), 9-14. https://doi.org/10.30526/31.1.1844.

Hashim, A.; Al-Abodi, E. E. Photodegradation of Lauth’s violet dye using Go-FE3O4-tio2 nanocomposite under Solar Light. Journal of Physics: Conference Series, 2021, 1853, 012013. https://doi: 10.1088/1742-6596/1853/1/012013.

Katafa, A. J.; Hamid, M. K. Influence of zno nanoparticles on Candida Albicans of human male pleural fluid. Iraqi Journal of Science, 2020, 61(3),540–549. https://doi.org/10.24996/ijs.2020.61.3.10.

Imran, H. J.; Hubeatir, K. A.; Aadim, K. A. A novel method for zno@nio core–shell nanoparticle synthesis using pulse laser ablation in liquid and plasma jet techniques. Scientific Reports, 2023, 13, 5441. https://doi.org/10.1038/s41598-023-32330-z.