Immunological Role of IL-3, IL-22 and Some Physiological Markers in Iraqi Patients with Chronic Kidney Disease

Authors

DOI:

https://doi.org/10.30526/37.3.3476

Keywords:

Interleukin-3, Interleukin -22, Creatinine, Urea, Albumin and CKD

Abstract

Chronic kidney disease (CKD) is a global health issue that is linked to  early death and low quality of life. Management in its early phases may lead to better health results. Chronic inflammation related to  advanced CKD, as indicated by higher levels of different pro-inflammatory cytokines or impacted levels of acute-phase proteins. This study was carried out in order to assess the roles of interleukins (IL-3 and IL-22), some  kidney functions, complete blood count (CBC) and erythrocyte sedimentation rate (ESR) in CKD progression. Commercial enzyme linked immunosorbent assay (ELISA) kits were utilized to calculate interleukin (IL-3 and IL-22) levels in the serum of 60 patients with CKD (age range 20-87 years) and 30 age-matched healthy group. The levels of ESR, CBC, creatinine, urea, uric acid and albumin were also measured. The results showed a significant rise in IL-3 and IL-22 in CKD patients in comparison to healthy controls. CKD Patients were exposed to high levels of some CBC parameters and ESR and there was a significant difference in contrast to group of healthy control. There was a significant rise in creatinine and urea levels in CKD patients compared to healthy controls. The level of albumin was reduced in patients diagnosed with CKD and there was a significant difference between CKD patients and healthy controls. However, the level of uric acid increased in patients diagnosed with CKD but there was no significant difference between patients diagnosed with CKD and healthy group. There is a possible role of interleukins IL-3 and IL-22 in the usage of them as biomarkers for the progression of CKD.

References

Romagnani, P.; Remuzzi, G.; Glassock, R.; Levin, A.; Jager, K.J.; Tonelli, M.; Massy, Z.; Wanner, C.; Anders, H.-J. Chronic kidney disease. Nature reviews Disease primers 2017, 3, 1-24. DOI: https://doi.org/10.1038/nrdp.2017.8.

Zacharias, F.; Kolios, G.; Valentinos, P.; Kontomanolis, E.N. Interleukins Associated with Breast Cancer. Cureus 2018, 10. DOI: https://doi.org/10.7759/cureus.3549.

Mertowska, P.; Mertowski, S.; Smarz-Widelska, I.; Grywalska, E. Biological role, mechanism of action and the importance of interleukins in kidney diseases. International Journal of Molecular Sciences 2022, 23, 647. https://doi.org/10.3390/ijms23020647.

Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Temmar, M.; Lemke, H.-D.; Tribouilloy, C.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; Group, E.U.T.W. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney international 2010, 77, 550-556. DOI: https://doi.org/10.1038/ki.2009.503.

Kumar, A.; Rani, L.; Mhaske, S.T.; Pote, S.T.; Behera, S.; Mishra, G.C.; Wani, M.R. IL-3 receptor expression on activated human Th cells is regulated by IL-4, and IL-3 synergizes with IL-4 to enhance Th2 cell differentiation. The Journal of Immunology 2020, 204, 819-831. https://doi.org/10.4049/jimmunol.1801629.

Renner, K.; Metz, S.; Metzger, A.-M.; Neumayer, S.; Schmidbauer, K.; Talke, Y.; Buchtler, S.; Halbritter, D.; Mack, M. Expression of IL-3 receptors and impact of IL-3 on human T and B cells. Cellular Immunology, 2018, 334, 49-60. https://doi.org/10.1016/j.cellimm.2018.09.005.

Alcorn, J.F. IL-22 plays a critical role in maintaining epithelial integrity during pulmonary infection. Frontiers in immunology, 2020, 11, 1160. https://doi.org/10.3389/fimmu.2020.01160.

Weidenbusch, M.; Rodler, S.; Song, S.; Romoli, S.; Marschner, J.A.; Kraft, F.; Holderied, A.; Kumar, S.; Mulay, S.R.; Honarpisheh, M. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Bioscience reports 2017, 37. https://doi.org/10.1042/BSR20170099.

Weidenbusch, M.; Song, S.; Iwakura, T.; Shi, C.; Rodler, S.; Kobold, S.; Mulay, S.R.; Honarpisheh, M.M.; Anders, H.J. IL‐22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiological Reports 2018, 6, e13817. https://doi.org/10.14814/phy2.13817.

Tishkowski, K.; Gupta, V. Erythrocyte sedimentation rate. In StatPearls [Internet]; StatPearls Publishing: 2022. https://www.ncbi.nlm.nih.gov/books/NBK557485/.

Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From physiology to clinical application. European journal of internal medicine 2020, 72, 9-14. DOI: 10.1016/j.ejim.2019.10.025.

Al-Taiee, T.A.K.; Al-Shammaa, N.M. Effect of Anti Diuretic Hormon (ADH) in Kidney Function on Post Hemodialysis End Stage Renal Failure Disease (ESRD) Iraqi Patients. Iraqi Journal of Science 2018, 1372-1377. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/436.

Pundir, C.; Kumar, P.; Jaiwal, R. Biosensing methods for determination of creatinine: A review. Biosensors and bioelectronics 2019, 126, 707-724. https://doi.org/10.1016/j.bios.2018.11.031.

Gounden V, Bhatt H, Jialal I. Renal Function Tests. In: StatPearls. Treasure Island (FL): StatPearls Publishing, 2023. Bookshelf ID: NBK507821.

Aldabagh, S.H.; Al-Lami, M.Q.; Al-Samarriae, A.Y. Evaluation of calcium regulating hormones and some biochemical parameters in growth hormone deficient patients. Iraqi Journal of Science 2020, 499-507. https://doi.org/10.24996/ijs.2020.61.3.5.

Perl, J.; Unruh, M.; Chan, C. Sleep disorders in end-stage renal disease:‘Markers of inadequate dialysis?’. Kidney international 2006, 70, 1687-1693. https://doi.org/10.1038/sj.ki.5001791.

Al-Rufaie, E.M.; AL-Zahra, A.A. Physical Properties and Chemical Kinetics for the Interaction of Albumin with Amoxicillin. Iraqi Journal of Science 2015, 56, 3015-3024. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/9340.

Arques, S. Human serum albumin in cardiovascular diseases. European journal of internal medicine 2018, 52, 8-12. DOI: https://doi.org/10.1016/j.ejim.2018.04.014.

Joannidis, M.; Wiedermann, C.J.; Ostermann, M. Ten myths about albumin. Intensive Care Medicine 2022, 48, 602-605. https://doi.org/10.1007/s00134-022-06740-y.

Lee, S.J.; Oh, B.K.; Sung, K.-C. Uric acid and cardiometabolic diseases. Clinical Hypertension 2020, 26, 1-7. https://doi.org/10.1186/s40885-020-00146-y.

El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. Journal of advanced research 2017, 8, 487-493. https://doi.org/10.1016/j.jare.2017.03.003.

Bayram, S.M.; Salih, L.A.; Eleiwe, S.A. The Study the correlation between Human Chorionic Gonadotropin Hormone and Some Biochemical Parameters in Iraqi Women with Pregnancy-Induced Hypertension. Iraqi Journal of Science 2018, 1786-1791. https://doi.org/10.24996/ijs.2018.59.4A.3.

Agnello, L.; Giglio, R.V.; Bivona, G.; Scazzone, C.; Gambino, C.M.; Iacona, A.; Ciaccio, A.M.; Lo Sasso, B.; Ciaccio, M. The value of a complete blood count (CBC) for sepsis diagnosis and prognosis. Diagnostics 2021, 11, 1881. https://doi.org/10.3390/diagnostics11101881.

Weidenbusch, M.J. The role of IL-22 in kidney disease and regeneration. Technische Universität München, 2018. https://mediatum.ub.tum.de/1452684.

Arık, N.; Bedir, A.; Günaydın, M.; Adam, B.; Halefi, I. Do erythrocyte sedimentation rate and C-reactive protein levels have diagnostic usefulness in patients with renal failure? Nephron 2000, 86, 224-224. DOI: https://doi.org/10.1159/000045760.

Bathon, J.; Graves, J.; Jens, P.; Hamrick, R.; Mayes, M. The erythrocyte sedimentation rate in end-stage renal failure. American Journal of Kidney Diseases 1987, 10, 34-40. https://doi.org/10.1016/s0272-6386(87)80008-2.

Iyawe, I.O.; Adejumo, O.A. Hematological profile of predialysis chronic kidney disease patients in a tertiary hospital in Southern Nigeria. Journal of Medicine in the Tropics 2018, 20, 36. doi: https://doi.org/10.1371/journal.pone.0280817.

Fan, F.; Jia, J.; Li, J.; Huo, Y.; Zhang, Y. White blood cell count predicts the odds of kidney function decline in a Chinese community-based population. BMC nephrology 2017, 18, 1-9. https://doi.org/10.1186/s12882-017-0608-4.

Naicker, S.D.; Cormican, S.; Griffin, T.P.; Maretto, S.; Martin, W.P.; Ferguson, J.P.; Cotter, D.; Connaughton, E.P.; Dennedy, M.C.; Griffin, M.D. Chronic kidney disease severity is associated with selective expansion of a distinctive intermediate monocyte subpopulation. Frontiers in immunology 2018, 9, 2845. https://doi.org/10.1186/s12882-017-0608-4.

Lin, J.; Tang, W.; Liu, W.; Yu, F.; Wu, Y.; Fang, X.; Zhou, M.; Hao, W.; Hu, W. Decreased B1 and B2 lymphocytes are associated with mortality in elderly patients with chronic kidney diseases. Frontiers in medicine 2020, 7, 75. https://doi.org/10.3389/fmed.2020.00075.

Shastry, I.; Belurkar, S. The spectrum of red blood cell parameters in chronic kidney disease: A study of 300 cases. Journal of Applied Hematology 2019, 10, 61. https://doi.org/10.4103/joah.joah_13_19.

Shaikh, H.; Aeddula, N.R. Anemia of chronic renal disease. 2019. https://europepmc.org/article/nbk/nbk539871.

Elias, M.F.; Elias, P.K.; Seliger, S.L.; Narsipur, S.S.; Dore, G.A.; Robbins, M.A. Chronic kidney disease, creatinine and cognitive functioning. Nephrology Dialysis Transplantation 2009, 24, 2446-2452. https://doi.org/10.1093/ndt/gfp107.

Di Micco, L.; Quinn, R.R.; Ronksley, P.E.; Bellizzi, V.; Lewin, A.M.; Cianciaruso, B.; Ravani, P. Urine creatinine excretion and clinical outcomes in CKD. Clinical Journal of the American Society of Nephrology 2013, 8, 1877-1883. https://doi.org/10.2215/CJN.01350213.

Seki, M.; Nakayama, M.; Sakoh, T.; Yoshitomi, R.; Fukui, A.; Katafuchi, E.; Tsuda, S.; Nakano, T.; Tsuruya, K.; Kitazono, T. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3–5 chronic kidney disease: a prospective observational study. BMC nephrology 2019, 20, 1-10. https://doi.org/10.1186/s12882-019-1306-1.

Kamal, A. Estimation of blood urea (BUN) and serum creatinine level in patients of renal disorder. Indian J Fundam Appl Life Sci 2014, 4, 199-202. http://www.cibtech.org/jls.htm.

Nivedita, A.K.; Sinha, A.; Mitra, J.; Sinha, R. Uric acid levels in chronic kidney disease-a hospital based cross-sectional study in RIMS, Ranchi, Jharkhand. International Journal of Research in Medical Sciences 2021, 9, 569. DOI: https://doi.org/10.18203/2320-6012.ijrms20210444.

Lang, J.; Katz, R.; Ix, J.H.; Gutierrez, O.M.; Peralta, C.A.; Parikh, C.R.; Satterfield, S.; Petrovic, S.; Devarajan, P.; Bennett, M. Association of serum albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrology Dialysis Transplantation 2018, 33, 986-992. https://doi.org/10.1093/ndt/gfx229.

Don, B.R.; Kaysen, G. Poor nutritional status and inflammation: serum albumin: relationship to inflammation and nutrition. In Proceedings of the Seminars in dialysis, 2004, 432-437. https://doi.org/10.1111/j.0894-0959.2004.17603.x.

Meijers, B.K.; Bammens, B.; Verbeke, K.; Evenepoel, P. A review of albumin binding in CKD. American journal of kidney diseases 2008, 51, 839-850. https://doi.org/10.1053/j.ajkd.2007.12.035.

Downloads

Published

20-Jul-2024

Issue

Section

Biology

Publication Dates

Received

2023-05-08

Accepted

2023-06-11

Published Online First

2024-07-20