Centralizer on Lie-ideal of Semi-prime Inverse Semi-ring
DOI:
https://doi.org/10.30526/38.1.3482Keywords:
Lie-ideal, prime inverse semi-ring, semi-prime inverse semi-ring, α-centralizer, jordan α-centralizerAbstract
The summary purpose of this work: We extending certain results on α-centralizer of inverse semiring under specific conditions, achieve new results on lie ideal of inverse semiring with some consequent collieries, generalize assorted α-centralizer for lie ideal of inverse semiring with some collieries, investigate significant theorems on jordan α-centralizer of prime inverse semiring and we extend certain results of centralizers and jordan centralizers on lie-ideals of prime semi-rings to prime inverse semi-ring, we generalizing the results of Mary in to α-centralizer on semiring, Also we generalize our results on lie ideals of inverse semiring. We extending the results of Shafiq, Aslam, Javed to centralizer of Inverse semiring. (right) ”V, we get the output R is a left (right) on ”If it where V, , and We also get the following output R is .
References
Vandiver S.H.:Note on a simple type of Algebra in Which the Cancellation Law of Addition Does Not Hold. Bull. Amer. Math. Soc. Nature. 1934; 40: 914-920.
Karvellas P.H.: Inversive semi-rings. J. Aust. Math. Science. 1974; 18: 277-288.
Javed M.A.; Aslam M.; Hussain, M.:On requirement (A2) of Bandlet, Petrich for inverse semi-rings. Int. Mathematical Forum. Nature. 2012; 59(7): 2903–2914.
Albas E.:On τ -Centralizers of semi-prime rings. Siberian Math. J. Science. 2007; 48: 191-196.
Ibraheem R.KH.; Majeed A.H.: U-S Jordan Homomorphisim of inverse semi-rings. Iraqi Journal of Science. Nature. 2019, 60 (8):1783-1790. https://doi.org/10.24996/ijs.2019.60.8.15
Rasheed M.K.; Hameed F.A.; Majeed A.H.: On Generalized (α, β) Derivation on Prime Semi-rings. J. Phys.: Conf. Ser. 2020, 1291-1508. https://doi.org/ 10.1088/1742-6596/1591/1/012080
Rasheed M.K.; Majeed A.H.: Some Results of (α, β) Derivations on prime semi-rings. Iraqi Journal of Science. 2019; 60(5): 1154-1160. https://doi.org/ 10.24996/ijs.2019.60.5.23
Zaghir K.AD.; Majeed A.H.: (α,β)-Derivationson prime inverse semi-rings. Iraqi journal of Science. 2021; 62(11): 4081-4091. https://doi.org/10.24996/ijs.2021.62.11.28
Zaghir K.AD.; Majeed A.H.: (α, β) - Derivations on ideals in prime inverse semi-rings. AIP Conference Proceedings. 2023; 40(1): 4031-4110. https://doi.org/10.1063/5.0117578
Shafiq S.; Aslam M.; Javed, M.A.: On centralizer of inverse semiring. Discussions Mathematica General Algebra, Applications. 2016; 36: 71-84.
Ahmed Y.; Dudek W. A.: Left Jordan derivations on certain semi-rings. Hacet. J. Math. Stat. 2021; 50(3): 624 – 633. https://doi.org/10.15672/hujms.491343
Javed M.A.; Aslam M.; Hussain M.: On requirement (A2) of Bandelt and Petrich for inverse semi-rings. Int. Math. Forum. Science 2012; 7(59): 2903-2914.
Majeed A.H.; Meften M.I.: Lie-ideals, Jordan q-Centralizers of Prime Rings. Journal of Al-Nahrain University. 2011; 14(2): 173-177. https://doi.org/ 10.22401/JNUS.14.2.22
Ibraheem R.KH.; Majeed A.H.: On lie Structure in semi-prime inverse semi-rings. Iraqi Journal of Science. 2019; 60(12): 2711-2718. https://doi.org/10.24996/ijs.2019.60.12.21
DIMITROV S.: Derivations on semirings. AIP Conference Proceedings. 2017; 1910, 060011:1-22 https://doi.org/10.1063/1.5014005
Golan J. S. Semirings and their applications. University of Haifa, Haifa, Palestine, 1992.
Golan J. S. The theory of Semirings with Applications Mathematics and Theoretical Computer science. John Wiley and Sons.Inc., New York, 1992.
Jonathan S. G. Semirings and their applications, University of Haifa, Haifa, Palestine, 1992.
Joseph H. M. Centralizing mapping of prime rings. Canned. Math.Bull. 1984; 27 (1):122-126. https://doi.org/10.4153/CMB-1984-018-2
Mary, D., Murugensan, R. and Namasivayam P. Centralizers on Semiprime Semirings. IOSR Jornal of Mathematics. 2016; 12(3): 86-93. www.iosrjournals.org
Sara A. and Aslam. M. on Li Ideal of Inverse Semirings, Italian Journal of Pure and Applied Mathematics. 2020; 44: 22-29.
Sultana, K.A. Some Structural Properties of Semirings, Annals of Pure and Applied Mathematics. 2014; 5(2):158-167.
Ibrahim, R. K. on additive mappings of inverse semirings, M.Sc. Thesis. University of Baghdad, Collage of science department, 2019.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms