Centralizer on Lie-ideal of Semi-prime Inverse Semi-ring

Authors

DOI:

https://doi.org/10.30526/38.1.3482

Keywords:

Lie-ideal, prime inverse semi-ring, semi-prime inverse semi-ring, α-centralizer, jordan α-centralizer

Abstract

    The summary purpose of this work: We extending certain results on α-centralizer of inverse semiring under specific conditions, achieve new results on lie ideal of inverse semiring with some consequent collieries, generalize assorted α-centralizer for lie ideal of inverse semiring with some collieries, investigate significant theorems on jordan α-centralizer of prime inverse semiring and we extend certain results of centralizers and jordan centralizers on lie-ideals of prime semi-rings to prime inverse semi-ring, we generalizing the results of Mary in to α-centralizer on semiring, Also we generalize our results on lie ideals of inverse semiring. We extending the results of Shafiq,  Aslam,  Javed to  centralizer of Inverse semiring.  (right) ”V, we get the output R is a left (right) on ”If it where V, , and  We also get the following output  R is    .

Author Biographies

  • Ali JA. Abass , Department of Mathematics, College, of Science, University of Baghdad, Baghdad, Iraq

    .

  • Mohammed Yasin, Department of Mathematics, An-Najah National University, Nablus P400, Palestine

    .

  • Shrooq Bahjat Smeein , Department of Information -Section Mathematics, University of Technology and Applied Science - Muscat, Sultanate of Oman.

    .

References

Vandiver S.H.:Note on a simple type of Algebra in Which the Cancellation Law of Addition Does Not Hold. Bull. Amer. Math. Soc. Nature. 1934; 40: 914-920.

Karvellas P.H.: Inversive semi-rings. J. Aust. Math. Science. 1974; 18: 277-288.

Javed M.A.; Aslam M.; Hussain, M.:On requirement (A2) of Bandlet, Petrich for inverse semi-rings. Int. Mathematical Forum. Nature. 2012; 59(7): 2903–2914.

Albas E.:On τ -Centralizers of semi-prime rings. Siberian Math. J. Science. 2007; 48: 191-196.

Ibraheem R.KH.; Majeed A.H.: U-S Jordan Homomorphisim of inverse semi-rings. Iraqi Journal of Science. Nature. 2019, 60 (8):1783-1790. https://doi.org/10.24996/ijs.2019.60.8.15

Rasheed M.K.; Hameed F.A.; Majeed A.H.: On Generalized (α, β) Derivation on Prime Semi-rings. J. Phys.: Conf. Ser. 2020, 1291-1508. https://doi.org/ 10.1088/1742-6596/1591/1/012080

Rasheed M.K.; Majeed A.H.: Some Results of (α, β) Derivations on prime semi-rings. Iraqi Journal of Science. 2019; 60(5): 1154-1160. https://doi.org/ 10.24996/ijs.2019.60.5.23

Zaghir K.AD.; Majeed A.H.: (α,β)-Derivationson prime inverse semi-rings. Iraqi journal of Science. 2021; 62(11): 4081-4091. https://doi.org/10.24996/ijs.2021.62.11.28

Zaghir K.AD.; Majeed A.H.: (α, β) - Derivations on ideals in prime inverse semi-rings. AIP Conference Proceedings. 2023; 40(1): 4031-4110. https://doi.org/10.1063/5.0117578

Shafiq S.; Aslam M.; Javed, M.A.: On centralizer of inverse semiring. Discussions Mathematica General Algebra, Applications. 2016; 36: 71-84.

Ahmed Y.; Dudek W. A.: Left Jordan derivations on certain semi-rings. Hacet. J. Math. Stat. 2021; 50(3): 624 – 633. https://doi.org/10.15672/hujms.491343

Javed M.A.; Aslam M.; Hussain M.: On requirement (A2) of Bandelt and Petrich for inverse semi-rings. Int. Math. Forum. Science 2012; 7(59): 2903-2914.

Majeed A.H.; Meften M.I.: Lie-ideals, Jordan q-Centralizers of Prime Rings. Journal of Al-Nahrain University. 2011; 14(2): 173-177. https://doi.org/ 10.22401/JNUS.14.2.22

Ibraheem R.KH.; Majeed A.H.: On lie Structure in semi-prime inverse semi-rings. Iraqi Journal of Science. 2019; 60(12): 2711-2718. https://doi.org/10.24996/ijs.2019.60.12.21

DIMITROV S.: Derivations on semirings. AIP Conference Proceedings. 2017; 1910, 060011:1-22‏ https://doi.org/10.1063/1.5014005

Golan J. S. Semirings and their applications. University of Haifa, Haifa, Palestine, 1992.

Golan J. S. The theory of Semirings with Applications Mathematics and Theoretical Computer science. John Wiley and Sons.Inc., New York, 1992.

Jonathan S. G. Semirings and their applications, University of Haifa, Haifa, Palestine, 1992.

Joseph H. M. Centralizing mapping of prime rings. Canned. Math.Bull. 1984; 27 (1):122-126. https://doi.org/10.4153/CMB-1984-018-2

Mary, D., Murugensan, R. and Namasivayam P. Centralizers on Semiprime Semirings. IOSR Jornal of Mathematics. 2016; 12(3): 86-93. www.iosrjournals.org

Sara A. and Aslam. M. on Li Ideal of Inverse Semirings, Italian Journal of Pure and Applied Mathematics. 2020; 44: 22-29.

Sultana, K.A. Some Structural Properties of Semirings, Annals of Pure and Applied Mathematics. 2014; 5(2):158-167.

Ibrahim, R. K. on additive mappings of inverse semirings, M.Sc. Thesis. University of Baghdad, Collage of science department, 2019.

Downloads

Published

20-Jan-2025

Issue

Section

Mathematics

How to Cite

[1]
JA. Abass , A. et al. 2025. Centralizer on Lie-ideal of Semi-prime Inverse Semi-ring. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 1 (Jan. 2025), 397–406. DOI:https://doi.org/10.30526/38.1.3482.