Ammi majus Seed Extract Cardioprotective Effect Against Doxorubicin Cardiotoxicity in Mice

Main Article Content

Israa AJ Jasim
Shihab H. Mutlag

Abstract

One of the most efficient anthracycline anti-cancer medications, doxorubicin, is used to treat lymphoid malignancies. Intercalation with deoxyribonucleic acid is a key component of its primary chemotherapeutic mode of action, which can ultimately lead to heart failure. Therefore, the objective of this study was to determine whether the ethanolic extract of Ammi majus had any cardioprotective effects against doxorubicin toxicity in mice. 48 mature Albino male mice were separated into six groups and distributed as follows: for 14 days, Group I: "negative control" received distilled water; Group II: mice received a single oral daily dose of 64 mg/kg of Ammi majus seeds extract; Group III: mice received a single oral daily dose of 128 mg/kg of Ammi majus seeds extract; and Group IV: "positive control" received a single dose of 2 ml/kg of distilled water. On day fifteen, the mice got an intraperitoneal dose of 15 mg/kg of Doxorubicin; they were sacrificed using anesthetic ether 24 hours later. Group V was given a single dose of 15 mg/kg of doxorubicin on day 15 after receiving 64 mg/kg/day of Ammi majus. Finally, group VI mice received 128 mg/kg of Ammi majus, and on day 15, they got a single dosage of 15 mg/kg of doxorubicin. To analyze malondialdehyde, creatine kinase-myoglobin binding, and creatine phosphokinase as indicators of cardiotoxicity, the blood was drawn from the preorbital sac. Data analysis revealed that mice pre-treated with different doses of Ammi majus extract (64 mg and 128 mg/kg) significantly reduced the heart damage as compared to animals intoxicated by Doxorubicin, as evidenced by an increase in malondialdehyde, creatine kinase-myoglobin, and creatine phosphokinase in the Doxorubicin group. So the alcoholic extract of Ammi majus seeds reduced the heart injury in pretreated mice, because of its active constituent, which has anti-inflammatory action and antioxidant properties.


 

Article Details

How to Cite
[1]
Jasim , I.A. and Mutlag, S.H. 2024. Ammi majus Seed Extract Cardioprotective Effect Against Doxorubicin Cardiotoxicity in Mice. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 125–134. DOI:https://doi.org/10.30526/37.3.3485.
Section
Biology

How to Cite

[1]
Jasim , I.A. and Mutlag, S.H. 2024. Ammi majus Seed Extract Cardioprotective Effect Against Doxorubicin Cardiotoxicity in Mice. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 125–134. DOI:https://doi.org/10.30526/37.3.3485.

Publication Dates

Received

2023-05-16

Accepted

2023-06-17

Published Online First

2024-07-20

References

Pharmacopeia, U.S. National Formulary USP 38—NF 33. In: Proceedings of the Rockville: The United States Pharmacopeial Convention, 2015.

Reddy, L.H.; Murthy, R.S. Pharmacokinetics and Biodistribution Studies of Doxorubicin Loaded Poly (Butyl Cyanoacrylate) Nanoparticles Synthesized by Two Different Techniques. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2004, 148, 161–166. DOI: https://doi.org/10.5507/bp.2004.029.

Gharanei, M.; Hussain, A.; Janneh, O.; Maddock, H.L. Doxorubicin Induced Myocardial Injury Is Exacerbated Following Ischaemic Stress via Opening of the Mitochondrial Permeability Transition Pore. Toxicol. Appl. Pharmacol. 2013, 268, 149–156. DOI: https://doi.org/10.1016/j.taap.2012.12.003.

Doroshow, J.H. Role of Hydrogen Peroxide and Hydroxyl Radical Formation in the Killing of Ehrlich Tumor Cells by Anticancer Quinones. Proc. Natl. Acad. Sci. 1986, 83, 4514–4518. DOI: https://doi.org/10.1073/pnas.83.12.4514.

Tewey, K.M.; Rowe, T.C.; Yang, L.; Halligan, B.D.; Liu, L.-F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science. 1984, 226, 466–468. DOI: https://doi.org/10.1126/science.6093249.

Octavia, Y., Tocchetti, C.G., Gabrielson, K.L., Janssens, S., Crijns, H.J. and Moens, A.L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. Journal of molecular and cellular cardiology 2012, 52(6), 1213-1225. DOI: https://doi.org/10.1016/j.yjmcc.2012.03.006.

Adımcılar, V.; Beyazit, N.; Erim, F.B. Khellin and Visnagin in Different Organs of Ammi visnaga and Ammi majus. Natural Product Research 2023, 37(1), 164-166. DOI: https://doi.org/10.1080/14786419.2021.1956924.

Eisenreichoa, E.; Buckova, L.; Tomko, J. Contents of Ammi majus L Substances. Farm Obz 1980, 49.

Dar, A.A.; Jamal, K. Evaluation of Larvicidal Effects of Aqueous Leaf and Flower Extracts of Ammi majus (Linn.) on Mosquito Larvae. Munis Entomol. Zoology, 2021, 16(2), 891–897.

Selim, Y.A.; Ouf, N.H. Anti-Inflammatory New Coumarin from the Ammi majus L. Org. Med. Chem. Lett. 2012, 2, 1–4. DOI: https://doi.org/10.1186/2191-2858-2-1.

Nayebi, S.; Kakeshpour, T.; Hasanvand, A.; Nadri, M.; Rashidi Monfared, S. Composition of Volatile Compounds of Extract of Ammi Majus from Iran by GC-MS. Journal of Sciences, Islamic Republic of Iran 2013, 24(2), 335–338.

Hilal, S.H.; Haggag, M.Y. A Thin-Layer Chromatography (TLC) Colorimetric Assay of Furocoumarins. Egypt J. Pharm Sci. 1975, 16, 495–499. DOI: https://doi.org/10.1007/bf02268780.

Elgamal, M.H.A.; Shalaby, N.M.M.; Duddeck, H.; Hiegemann, M. Coumarins and Coumarin Glucosides from the Fruits of Ammi majus. Phytochemistry 1993, 34, 819–823. DOI: https://doi.org/10.1016/0031-9422(93)85365-X.

Arab, S.T.; Al-Nami, S.Y.; Abu–Mustafa, E.A. Chemical Composition of Ammi majus L. and Its Inhibition Activity against Corrosion. Egypt. J. Chem. 2008, 51, 115–128.

Jain, P.K.; Joshi, H. Coumarin: Chemical and Pharmacological Profile. J. Appl. Pharm. Sci. 2012, 236–240. DOI: https://doi.org/10.7324/JAPS.2012.2643.

Deng, M.; Xie, L.; Zhong, L.; Liao, Y.; Liu, L.; Li, X. Imperatorin: A Review of Its Pharmacology, Toxicity and Pharmacokinetics. Eur. J. Pharmacol. 2020, 879, 173124. DOI: https://doi.org/10.1016/j.ejphar.2020.173124.

Chen, G.; Liu, Y.; Xu, Y.; Zhang, M.; Guo, S.; Zhang, G. Isoimperatorin Exerts Anti-Inflammatory Activity by Targeting the LPS-TLR4/MD-2-NF-ΚB Pathway. Eur. J. Inflamm. 2021, 19. https://doi.org/10.1177/20587392211000573.

Laing, T.J.; Richardson, B.C.; Toth, M.B.; Smith, E.M.; Marks, R.M. Ultraviolet Light and 8-Methoxypsoralen Inhibit Expression of Endothelial Adhesion Molecules. J. Rheumatol. 1995, 22, 2126–2131.

Al-Snafi, A.E. Chemical Constituents and Pharmacological Activities of Ammi majus and Ammi visnaga. A Review. Int. J. Pharm. Ind. Res. 2013, 3, 257–265.

Wu, C.; Lan, C.; Wang, L.; Chen, G.; Wu, C.; Yu, H. Effects of Psoralen plus Ultraviolet A Irradiation on Cultured Epidermal Cells in Vitro and Patients with Vitiligo in Vivo. Br. J. Dermatol. 2007, 156, 122–129. DOI: https://doi.org/10.1111/j.1365-2133.2006.07584.x.

Mutlag, S.H. Dose Dependent Anti-Inflammatory Effect of Ammi Majus Alcoholic Extract in Rat: Chronic Study. Iraqi J. Pharm. Sci. 2012, 21, 82–86.DOI: https://doi.org/10.31351/vol21iss1pp82-86.

Hussein, H.M.; Hameed, I.H.; Ubaid, J.M. Analysis of the Secondary Metabolite Products of Ammi majus and Evaluation Anti-Insect Activity. International Journal of Pharmacognosy and Phytochemical Research 2016, 8(8), 1403-1411.

Falabella, R.; Barona, M.I. Update on Skin Repigmentation Therapies in Vitiligo. Pigment Cell Melanoma Res. 2009, 22, 42–65. DOI: https://doi.org/10.1111/j.1755-148X.2008.00528.x.

El Mofty, A.M. A Preliminary Clinical Report on the Treatment of Leucodermia with Ammi majus Linn. J. Egypt. Med. Assoc. 1948, 31, 651–665.

Al Akeel, R.; Al-Sheikh, Y.; Mateen, A.; Syed, R.; Janardhan, K.; Gupta, V.C. Evaluation of Antibacterial Activity of Crude Protein Extracts from Seeds of Six Different Medical Plants against Standard Bacterial Strains. Saudi J. Biol. Sci. 2014, 21, 147–151. https://doi.org/10.1016/j.sjbs.2013.09.003.

Odebiyi, O.O.; Sofowora, E.A. Phytochemical Screening of Nigerian Medicinal Plants II. Lloydia 1978, 41, 234–246.

Hussain, I.; Khan, S.; Khan, M.I.; Rehman, I.U.; Ahmed, M. Investigation of Fatty Acid Composition of Ammi Majus Seed Oil by Gas Chromatography Mass Spectrometry. J. Chinese Chem. Soc. 2012, 59, 655–658. DOI: https://doi.org/10.1002/jccs.201100477.

Junqueira, L.C.U.; Carneiro, J. Basic Histology: Text & Atlas; Junqueira’s Basic Histology; McGraw-Hill, 2005; ISBN 9780071440912.

Anjaneyulu, M.; Chopra, K. Quercetin, an Anti-Oxidant Bioflavonoid, Attenuates Diabetic Nephropathy in Rats. Clin. Exp. Pharmacol. & Physiol. 2004, 31, 244–248. DOI: https://doi.org/10.1111/j.1440-1681.2004.03982.x.

Gaweł, S.; Wardas, M.; Niedworok, E.; Wardas, P. [Malondialdehyde (MDA) as a lipid peroxidation marker]. Wiad. Lek. 2004, 57, 453–455. [Article in Polish].

Koti, B.C.; Vishwanathswamy, A.H.M.; Wagawade, J.; Thippeswamy, A.H.M. Cardioprotective Effect of Lipistat against Doxorubicin Induced Myocardial Toxicity in Albino Rats. Indian J. Exp. Biol. 2009, 47, 41–46.

Ammar, E.-S.M.; Said, S.A.; Suddek, G.M.; El-Damarawy, S.L. Amelioration of Doxorubicin-Induced Cardiotoxicity by Deferiprone in Rats. Can. J. Physiol. Pharmacol. 2011, 89, 269–276, doi:10.1139/y11-020. DOI: https://doi.org/10.1139/y11-020.

Ahmed1, I.A.;Mohammed, A.I.A.; Khaleel, K.J. Ameliorating the Anticancer Drug ”Adriamycin” Acute Cardiotoxicity by Rosuvastatin and Telmisartan in Rats. Iraqi J. Cancer Med. Genet. 2014, 7. https://doi.org/10.29409/ijcmg.v7i2.138.

Mutlag, S.H.; Ismael, D.K.; Al-Shawi, N.N. Study the Possible Hepatoprotective Effect of Different Doses of Ammi majus Seeds’ Extract against CCl4 Induced Liver Damage in Rats. Pharm Glob 2011, 9, 1–5.

Yagmurca, M.; Yasar, Z.; Bas, O. Effects of Quercetin on Kidney Injury Induced by Doxorubicin. Bratisl. Lek. Listy 2015, 116, 486–489. DOI: https://doi.org/10.4149/bll_2015_092.

Chen, J.-Y.; Hu, R.-Y.; Chou, H.-C. Quercetin-Induced Cardioprotection against Doxorubicin Cytotoxicity. J. Biomed. Sci. 2013, 20, 1–11. DOI: https://doi.org/10.1186/1423-0127-20-95.

Wakade, A.S.; Shah, A.S.; Kulkarni, M.P.; Juvekar, A.R. Protective Effect of Piper Longum L. on Oxidative Stress Induced Injury and Cellular Abnormality in Adriamycin Induced Cardiotoxicity in Rats. Indian Journal of Experimental Biology. 2008, 46(7), 528–533.

Kaithwas, G.; Dubey, K.; Pillai, K.K. Effect of Aloe Vera (Aloe barbadensis Miller) Gel on Doxorubicin-Induced Myocardial Oxidative Stress and Calcium Overload in Albino Rats. Indian J. Exp. Biol. 2011, 49, 260–268.

Zilinyi, R.; Czompa, A.; Czegledi, A.; Gajtko, A.; Pituk, D.; Lekli, I.; Tosaki, A. The Cardioprotective Effect of Metformin in Doxorubicin-Induced Cardiotoxicity: The Role of Autophagy. Molecules 2018, 23(5), 1184. https://doi.org/10.3390%2Fmolecules23051184.

Koti, B.C.; Vishwanathswamy, A.H.M.; Wagawade, J.; Thippeswamy, A.H.M. Cardioprotective Effect of Lipistat against Doxorubicin Induced Myocardial Toxicity in Albino Rats. Indian J. Exp. Biol. 2009, 47, 41–46.

Shirinbayan, V.; Roshan, V.D. Pretreatment Effect of Running Exercise on HSP 70 and DOX-Induced Cardiotoxicity. Asian pacific J. cancer Prev. 2012, 13, 5849–5855. DOI: https://doi.org/10.7314/apjcp.2012.13.11.5849.

Al-Hadhrami, R.M.S.; Hossain, M.A. Evaluation of Antioxidant, Antimicrobial and Cytotoxic Activities of Seed Crude Extracts of Ammi Majus Grown in Oman. Egypt. J. Basic Appl. Sci. 2016, 3, 329–334. DOI: https://doi.org/10.1016/j.ejbas.2016.08.001.

Vimal, V.; Devaki, T. Linear Furanocoumarin Protects Rat Myocardium against Lipidperoxidation and Membrane Damage during Experimental Myocardial Injury. Biomed. Pharmacother. 2004, 58, 393–400. DOI: https://doi.org/10.1016/j.biopha.2003.12.007.