Common Fixed Points of Three Multivalued Nonexpansive Random Operators For One Step Iterative Scheme
Main Article Content
Abstract
In this paper, we introduce a new one-step iteration process in Banach space and prove the existence of a common random fixed point of three non-expansive multivalued random operators through strong and weak convergences of an iterative process. The necessary and sufficient condition for the convergence of a sequence of measurable functions to a random fixed point of non-expansive multivalued random operators in uniformly convex Banach spaces is also established. Our random iteration scheme includes new random multivalued iterations as special cases. The results obtained in this paper are an extension and refinement of previously known results. A new random iterative scheme for approximating random common fixed points of three random non-expansive multivalued random operators is defined and we have proved weak and strong convergence theorems in a uniformly convex Banach space.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Hans, O., Random fixed point theorems, in Transactions of the first prague Conference on Information Theory, Statistical Decision Functions, Random Process, 1957, 105–125. https://doi.org/10.1016/B978-0-12-434160-9.50009-6
Huang ,T.; Rhoades, B. E. A general principle for Ishikawa iterations for multi-valued mappings, Indian J. Math. Pure Appl. 1997, 1091–1098.
Khan, S. H.; Abbas, M.; Rhoades B. E. A new one-step iterative scheme for approximating common fixed points of two multivalued nonexpansive mappings, Rend. del Circ. Mat. di Palermo. 2010, 151–159. https://doi.org/10.1007/s12215-010-0012-4
Engl, H. Random fixed point theorems for multivalued mappings, Pacific J. Math. 1978, 351–360. https://doi.org/10.2140/PJM.1978.76.351
Engl, H. W. Some random fixed point theorems for strict contractions and nonexpansive mappings, Nonlinear Anal. Theory, Methods Appl. 1978, 619–626.
Itoh .S., A random fixed point theorem for a multivalued contraction mapping, Pacific J. Math. 1977, 85–90. https://doi.org/10.2140/PJM.1977.68.85
Beg ,I. and Shahzad,N., Random fixed point theorems for nonexpansive and contractive-type random operators on Banach spaces, Stoch J. Math.Anal. Appl 1994, 569–580. https://doi.org/10.1155/S1048953394000444
Papageorgiou, N. S. Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Am. Math. Soc. 1986, 507–514. https://doi.org/10.1090/S0002-9939-1986-0840638-3
Sinacer, M. L.; Nieto J. J.; Ouahab, A. Random fixed point theorem in generalized Banach space and applications, Random Oper. Stoch. Equations. 2016, 93–112. http://dx.doi.org/10.1515/rose-2016-0007
Dhage, B. C. Some basic random fixed point theorems with PPF dependence and functional random differential equations, Differ. Equ. Appl. 2012, 181–195. https://doi.org/10.7153/DEA-04-11
El Ghabi , A. Random fixed point theorems with application to random differential equations in Banach spaces, 23 Sep., Inaug. Days, 54. https://doi.org/10.1155/2021/6648938
Beg, I. Approximation of random fixed points in normed spaces, Nonlinear Anal. Theory, Methods Appl. 2002 , 1363–1372. https://doi.org/10.1016/S0362-546X(01)00902-6
Tan, K.-K.; Yuan, X.-Z. Random fixed point theorems and approximation, Stoch. Anal. Appl., 103–123. https://doi.org/10.1006/jmaa.1994.1256
Shahzad, N. Random fixed point theorems for various classes of 1-set-contractive maps in Banach spaces, J. Math. Anal. Appl. 1996, 712–718. https://doi.org/10.1006/JMAA.1996.0407
Rashwan, R. A.; Albaqeri, D. M. A common random fixed point theorem and application to random integral equations, Int. J.Math. Res. Appl. 2014. https://doi.org/10.14419/IJAMR.V3I1.1690
Plubtieng ,S.; Kumam , P.; Wangkeeree ,R. Approximation of a common random fixed point for a finite family of random operators, Int. J. Math. Math. Sci. 2007. https://doi.org/10.1155/2007%2F69626
Beg, I.; Abbas, M. Convergence of iterative algorithms to common random fixed points of random operators, Stoch J. Math. Anal. Appl. 2006. https://doi.org/10.1155/JAMSA%2F2006%2F89213
Nadler Jr ,S. B. Multi-valued contraction mappings., Pacific J. Math. 1969, 475–488. https://doi.org/10.2140/PJM.1969.30.475
Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 1967, 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0
Nilsrakoo, W.; Saejung, S., A reconsideration on convergence of three-step iterations for asymptotically nonexpansive mappings, Math .Appl. Comput. 2007, 1472–1478. https://doi.org/10.1016/j.amc.2007.02.026
Malih, S. H. Random fixed point for random Fibonacci Noor iteration scheme J. Math. 2021, 775–779. https://doi.org/10.1080/09720502.2021.1884392
Abed , S. S.; Hasan, Z. M. Convergence comparison of two schemes for common fixed points with an application, Ibn AL-Haitham J. Pure Appl. Sci. 2019, 81–92. https://doi.org/10.30526/32.2.2146
Abed, S. S.; Hasan, Z. M. Common fixed point of a finite-step iteration algorithm under total asymptotically quasi-nonexpansive maps. Baghdad Sci. J. 2019, 654–660. http://dx.doi.org/10.21123/bsj.2019.16.3.0654
Maibed , Z. H.; Thajil, A. Q., Zenali Iteration Method For Approximating Fixed Point of A δ ZA-Quasi Contractive mappings. Ibn AL-Haitham J. Pure Appl. Sci. 2021, 78–92. https://doi.org/10.30526/34.4.2705
Malih, S. H. Common Fixed Point for a Pair of Asymptotically Nonexpansive and Multivalued Mapping Under Fibonacci Iteration Sequence in CAT (0) Space. in Journal of Physics: Conference Series 2021. https://doi.org/10.1088/1742-6596/1897/1/012061
Kadhim, A. J. New Common Fixed Points for Total Asymptotically Nonexpansive Mapping in CAT (0) Space. Baghdad Sci. J.2021. http://dx.doi.org/10.21123/bsj.2021.18.4.1286
Luaibi, H. H.; Abed,S. S. Fixed point theorems in general metric space with an application, Baghdad Sci J. 2021, 812–815. https://doi.org/10.21123/BSJ.2021.18.1%28SUPPL.%29.0812
Ajeel, Y. J.; Kadhim, S. N. Some Common fixed points theorems of four weakly compatible mappings in metric spaces, Baghdad Sci J. 2021, 543–546. https://doi.org/10.21123/BSJ.2021.18.3.0543
Malih, S. H., Fixed point theorems of modified Mann and Ishikawa iterations, J. Interdiscip. Math., 2021, 1093–1097. https://doi.org/10.1080/09720502.2020.1790739
Karahan, I.; Ozdemir, M. A general iterative method for approximation of fixed points and their applications. Adv. Fixed Point Theory. 2013, 510–526.