DFT Calculation and Docking Affinity Evaluation of Novel Quinoline Derivatives as an Antibacterial Agent

Main Article Content

Aya Ali Mohammed
Ahlam Mohammed Farhan

Abstract

The frightening growth of bacterial infections and their resistance to most first-line antibiotic drugs have made antibacterial therapy challenging. High accuracy, reduced time and effort, high cost, and a theoretical chemical study to find alternative treatments are preferable considerations. Chemical programs designed 150 fluoroquinolones in a theoretical study, and determined the top five based on their optimal binding affinity. The binding affinity (G) was calculated in Swiss Dock; a more negative G indicates a more suitable binding between the compound and the protein. This study selected the top five fluoroquinolones against each protein. The ΔG calculations indicate compound B has the highest inhibitory activity against Staphylococcus aureus (ΔG= -7.562 kcal/mol). Compound C has the strongest inhibitory activity against E. coli (ΔG= -8.562 kcal/mol) because it interacts with the Gyrase B protein. Compound A has the strongest inhibitory activity against Streptococcus pyogenes (ΔG= -6.762 kcal/mol) because it interacts with the cysteine protease Spe B. Compound D has the strongest inhibitory activity against Klebsiella pneumoniae (ΔG= -7.524 kcal/mol) because it interacts with the NDM-1 protein (ΔG= -6.999 kcal/mol) through their interaction with the azobenzene reductase protein. The HOMO-LUMO energy gaps of compounds (A-E) were theoretically estimated at B3LYP in conjunction with the base 6-311G (d, p) using DFT-based structural optimization. Compound E (∆E Gap= 0.130 eV) is the one with the lowest energy gap. Compound C (∆E Gap= 0.1609 eV) is the one that has the largest energy gap.

Article Details

How to Cite
[1]
Mohammed, A.A. and Farhan , A.M. 2024. DFT Calculation and Docking Affinity Evaluation of Novel Quinoline Derivatives as an Antibacterial Agent. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 297–311. DOI:https://doi.org/10.30526/37.4.3500.
Section
Chemistry

Publication Dates

Received

2023-05-19

Accepted

2023-06-25

Published Online First

2024-10-20

References

Al Salman, J.; Al Dabal, L.; Bassetti, M.; Alfouzan, W.A.; Al Maslamani, M.; Alraddadi, B.; Elhoufi, A.; Enani, M.; Khamis, F.A.; Mokkadas, E.; Romany, I.; Somily, A.; Kanj, S. Management Of Infections Caused by WHO Critical Priority Gram-Negative Pathogens in Arab Countries of the Middle East: A Consensus Paper. International Journal of Antimicrobial Agents 2020, 56(4), 106104. https://doi.org/10.1016/j.ijantimicag.2020.106104.

Jain, S.D.; Gupta, A. Chemistry of Fluoroquinones in the Management of Tuberculosis (TB): An Overview. Asian Journal of Pharmaceutical Research 2021, 11(1), 55-59.

http://dx.doi.org/10.5958/2231-5691.2021.00011.3. ‏

Alabdali, A.Y.M.; Khalid, R.; Kzar, M.; Ezzat, M.O.; Huei, G.M.; Hsia, T.W.; Mogana, R.; Rahman, H.; Abd Razik, B.M.; Issac, P.K.; Chinnappan, S.; Khalivulla, S.I. Design, Synthesis, in Silico and Antibacterial Evaluation of Curcumin Derivatives Loaded Nanofiber as Potential Wound Healing Agents. Journal of King Saud University-Science 2022, 34(7), 102205.

https://doi.org/10.1016/j.jksus.2022.102205.

Dib, M.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Recent Developments of Quinoline Derivatives and their Potential Biological Activities. Current Organic Synthesis 2021, 18(3), 248-269.‏ https://doi.org/10.2174/1570179417666201216162055.

Van de Walle, T.; Cools, L.; Mangelinckx, S.; D'hooghe, M. Recent Contributions of Quinolines to Antimalarial and Anticancer Drug Discovery Research. European Journal of Medicinal Chemistry 2021, 226, 113865.‏ https://doi.org/10.1016/j.ejmech.2021.113865.

Uddin, A.; Chawla, M.; Irfan, I.; Mahajan, S.; Singh, S.; Abid, M. Medicinal Chemistry Updates on Quinoline-and Endoperoxide-Based Hybrids with Potent Antimalarial Activity. RSC Medicinal Chemistry 2021, 12(1), 24-42.‏ https://doi.org/10.1039/D0MD00244E.

Yadav, P.; Kumar, A.; Althagafi, I.; Nemaysh, V.; Rai, R.; Pratap, R. The Recent Development of Tetrahydro-Quinoline/Isoquinoline Based Compounds as Anticancer Agents. Current Topics in Medicinal Chemistry 2021, 21(17), 1587-1622.‏ https://doi.org/10.2174/1568026621666210526164208.

Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive Review on Current Developments of Quinoline-Based Anticancer Agents. Arabian Journal of Chemistry 2019, 12(8), 4920-4946. https://doi.org/10.1016/j.arabjc.2016.10.009

Bouzian, Younos, B.; Yusuf, S.; Karrouchi, K.; Luc V.M.; Karim, Ch.; Lhassane, M.; Hamou, A.N.; Ahmed, T.; El Mokhtar, E. Synthesis, Spectroscopic Characterization, DFT, Molecular Docking and in Vitro Antibacterial Potential of Novel Quinoline Derivatives. Journal of Molecular Structure 2021, 1246, 131217.‏ https://doi.org/10.1016/j.molstruc.2021.131217.

El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline Derivatives Bearing Pyrazole Moiety: Synthesis and Biological Evaluation as Possible Antibacterial and Antifungal Agents. European Journal of Medicinal Chemistry 2018, 143, 1463-1473.

https://doi.org/10.1016/j.ejmech.2017.10.046.

Yaakov, B.D.; Shadkchan, Y.; Albert, N.; Kontoyiannis, D.P.; Osherov, N. The Quinoline Bromoquinol Exhibits Broad-Spectrum Antifungal Activity and Induces Oxidative Stress and Apoptosis in Aspergillus Fumigatus. Journal of Antimicrobial Chemotherapy 2017, 72(8), 2263-2272.

https://doi.org/10.1093/jac/dkx117.

Chen, Y.J.; Ma, K.Y.; Du, S.S.; Zhang, Z.J.; Wu, T.L.; Sun, Y.; Liu, Q-Y.; Yin , X-D.; Zhou, R.; Yan , Y-F.; Wang, R-X.; He, Y-H.; Chu, Q-R.; Tang, C. Antifungal Exploration of Quinoline Derivatives Against Phytopathogenic Fungi Inspired by Quinine Alkaloids. Journal of Agricultural and Food Chemistry 2021, 69(41), 12156-12170.‏ https://doi.org/10.1021/acs.jafc.1c05677.

Bhat, A.A.; Tandon, N.; Tandon, R. Pyrrolidine Derivatives as Antidiabetic Agents: Current Status and Future Prospects. Chemistry Select 2022, 7(6), 202103757.‏ https://doi.org/10.1002/slct.202103757.

Kaur, R.; Kumar, K. Synthetic and Medicinal Perspective of Quinolines as Antiviral Agents. European Journal of Medicinal Chemistry 2021, 215, 113220.‏

https://doi.org/10.1016/j.ejmech.2021.113220.

Savegnago, L.; Vieira, A.I.; Seus, N.; Goldani, B.S.; Castro, M R.; Lenardão, E.J.; Alves, D. Synthesis and Antioxidant Properties of Novel Quinoline–Chalcogenium Compounds. Tetrahedron Letters 2013, 54(1), 40-44. https://doi.org/10.1016/j.tetlet.2012.10.067.

Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and Anti-Inflammatory Evaluation of 4-Anilinofuro [2, 3-B] Quinoline and 4-Phenoxyfuro [2, 3-B] Quinoline Derivatives. Part 3. Bioorganic and Medicinal Chemistry 2004, 12(2), 387-392.

https://doi.org/10.1016/j.bmc.2003.10.051.

Joshi, P.V.; Sayed, A.A.; RaviKumar, A.; Puranik, V.G.; Zinjarde, S.S. 4-Phenyl Quinoline Derivatives as Potential Serotonin Receptor Ligands with Antiproliferative Activity. European Journal of Medicinal Chemistry 2017, 136, 246-258. https://doi.org/10.1016/j.ejmech.2017.05.002.

Borsoi, A.F.; Alice, L.M.; Sperotto, N.; Ramos, A.S.; Abbadi, B.L.; Hopf, F.S.M.; Dadda, A.D.; Rambo, R.S.; Silva, R.B.M.; Paz, J.D.; Pissinate, K.; Muniz, M.N.; Neves, C.E.; Galina, L.; González, L.C.; Perelló, M.A.; Czeczot, A.D.; Leyser, M.; de Oliveira, S.D.; Lock, G.D.; de Araújo, B.V.; Costa, T.D.; Bizarro, C.V.; Basso, L.A.; Machado, P. Antitubercular Activity of Novel 2-(Quinoline-4-Yloxy) Acetamides with Improved Drug-Like Properties. ACS Medicinal Chemistry Letters 2022, 13(8), 1337-1344. https://doi.org/10.1021/acsmedchemlett.2c00254.

Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A Versatile Heterocyclic. Saudi Pharmaceutical Journal 2013, 21(1), 1-12. https://doi.org/10.1016/j.jsps.2012.03.002.

Patel, A.; Patel, S.; Mehta, M.; Patel, Y.; Patel, R.; Shah, D.; Patel, D.; Shaha, U.; Patel, M.; Patel, S.; Solanki, N.; Bambharoliya, T.; Patel, S.; Nagani, A.; Patel, H.; Vaghasiya, J.; Shah, H.; Prajapati, B.; Rathod, M.; Bhimani, B.; Patel, R.; Bhavsar, V.; Rakholiya, B.; Patel, M.; Patel, P. A review on Synthetic Investigation for Quinoline- Recent Green Approaches. Green Chemistry Letters and Reviews 15(2), 337–372. https://doi.org/10.1080/17518253.2022.2064194.

Shaker, B.; Ahmad, S.; Lee, J.; Jung, C.; Na, D. In Silico Methods and Tools for Drug Discovery. Computers in Biology and Medicine 2021, 137, 104851.‏

https://doi.org/10.1080/17518253.2022.2064194.

Stefaniu, A.; Pintilie, L. Molecular Descriptors and Properties of Organic Molecules. Symmetry (Group Theory) Mathematical Treatment in Chemistry 2018, 7, 161-176.

http://dx.doi.org/10.5772/intechopen.72840.

Shahidha, R.; Al-Saadi, A.A.; Muthu, S. Vibrational Spectroscopic Studies, Normal Co-Ordinate Analysis, First Order Hyperpolarizability, HOMO–LUMO Of Midodrine by Using Density Functional Methods. Spectrochimica Acta Part A: Molecular And Biomolecular Spectroscopy 2015, 134, 127-142. https://doi.org/10.1016/j.saa.2014.06.033.

Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A.R.; Hatamjafari, F. Theoretical Investigations on The HOMO–LUMO Gap and Global Reactivity Descriptor Studies, Natural Bond Orbital, and Nucleus-Independent Chemical Shifts Analyses of 3-Phenylbenzo [D] Thiazole-2 (3 H)-Imine and its Para-Substituted Derivatives: Solvent and Substituent Effects. Journal of Chemical Research 2021, 45(1-2), 147-158.‏ https://doi.org/10.1177/1747519820932091.

Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Luke, W. Guddat, Haitao Yang. Structure of Mpro from SARS-CoV-2 and Discovery of its Inhibitors. Nature 2020, 582(7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y.

SwissDock - The Online Docking Web Server of the Swiss Institute of Bioinformatics–Docking. 2023. http://www.swissdock.ch/docking.

Stanzione, F.; Giangreco, I.; Cole, J.C. Use of Molecular Docking Computational Tools in Drug Discovery. Progress in Medicinal Chemistry 2021, 60, 273-343.

https://doi.org/10.1016/bs.pmch.2021.01.004.

Chem3D 17.0 User Guide, 2017, pp. 1–335. https://library.columbia.edu/content/dam/libraryweb/locations/dsc/Software%20Subpages/Chem3D_17_manual.pdf.

Amudha, G.; Santhakumari, R.; Chandrika, D.; Mugeshini, S.; Rajeswari, N.; Sagadevan, S. Synthesis, Growth, DFT, and HOMO-LUMO Studies on Pyrazolemethoxy Benzaldehyde Single Crystals. Chinese Journal of Physics 2022, 76, 44-58.‏ https://doi.org/10.1016/j.cjph.2021.10.038.

Qader, S.W.; Suvitha, A.; Ozdemir, M.; Benjamin, I.; Ram, A.S.; Akem, M.U.; Frank, A.Z.; Eluwa. E.C. Investigating the Physicochemical Properties and Pharmacokinetics of Curcumin Employing Density Functional Theory and Gastric Protection. Chemical Physics Impact 2022, 5, 100130.

https://doi.org/10.1016/j.chphi.2022.100130.

Golea, L.; Chebaki, R.; Laabassi, M.; Mosset, P. Synthesis, Characterization of Some Substituted Quinolines Derivatives: DFT, Computational, in Silico ADME, Molecular Docking and Biological Activities. Chemical Data Collections 2023, 43, 100977. https://doi.org/10.1016/j.cdc.2022.100977.

Sertbakan, T.R. Structure, Spectroscopic and Quantum Chemical Investigations of 4-Amino-2-Methyl-8-(Trifluoromethyl) Quinoline. Celal Bayar University Journal of Science 2017, 13, 851-861. https://doi.org/10.18466/cbayarfbe.339858.

Noureddine, O.; Issaoui, N.; Gatfaoui, S.; Al-Dossary, O.; Marouani, H. Quantum Chemical Calculations, Spectroscopic Properties and Molecular Docking Studies of a Novel Piperazine Derivative. Journal of King Saud University-Science 2021, 33(2), 101283.

https://doi.org/10.1016/j.jksus.2020.101283.

Stefaniu, A.; Pintilie, L. Molecular Descriptors and Properties of Organic Molecules. Symmetry (Group Theory) and Mathematical Treatment in Chemistry. IntechOpen 2018, 161-176.

http://dx.doi.org/10.5772/intechopen.72840.

GBD 2017 Risk Factor Collaborators. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet (London,England) 2018, 392(10159), 1923-1994. https://doi.org/10.1136/bmj-2021-068208