Development and Characterization of Chitosan Nanoparticles Loaded with Amoxicillin as Advanced Drug Delivery Systems against Streptococcus Mutans
DOI:
https://doi.org/10.30526/38.1.3501Keywords:
Chitosan CS, Chitosan nanoparticles CsNP, carboxymethyl chitosan CMC, Fourier-transform infrared spectroscopy FTIR, Polydispersity Index PDI, ζ –average Zeta potentialAbstract
This study's primary objective was to create nanotechnology-based, precisely regulated drug delivery devices. Antibiotic Amoxicillin was chosen, and chitosan nanoparticles (CSNPs) were chosen to transport the medicine. Using the ionic gelation process, chitosan solution NPs were synthesized using tripolyphosphate (TPP). Antibiotic-loaded chitosan nanoparticles (CSNPs) were then used to create a nanocomposite with good performance. The resultant nanocomposite can be put to use as an effective, non-toxic antimicrobial agent. CMCS has a considerably wider range of uses as an anti-bacterial agent than chitosan since it is soluble in a wide pH range. Due to its water solubility, Ten S. mutans isolates were purified in two mediums, making it easy to use and elicit a variety of biological activities of CMCS in pharma and cosmetics. Tryptone yeast extract cysteine sucrose mitis salivarius bacitracin agar. MS colonies on MSBA plates were blue, spherical or ovoid, 1-2 mm in diameter, with elevated surfaces that stuck well to the agar. Rough colonies had a rough or frosted glass surface. Samples treated with chitosan, carboxymethyl chitosan, chitosan nanoparticles, and their nanocomposite containing antibiotics (Amoxicillin) stymied the growth of Streptococcus mutans. Chitosan nanoparticles and their loaded antibiotics were discovered by scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In addition, the cytotoxicity of both the nanocomposite and amoxicillin loaded on nano-chitosan were compared to that of amoxicillin alone. PH 4.5 with a drug/polymer ratio of 1:2 (w/v) resulted in 89.33% entrapment and 53% loading efficiency for Amoxicillin in terms of their particle size, surface charge, bond interaction, and shape, respectively. A zeta potential of +24.5 mV and an average particle size of 258 nm were found through analysis. The results showed the superior antibacterial efficacy of the AMX-CSNPs. It can be concluded that AMX-CSNPs and CSNPs displayed acceptable physicochemical characterizations, and effective antimicrobial activities against Streptococcus mutans. These formulations could enhance drug delivery for treating cariogenic bacteria causing dental caries.
References
Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(10):3893–3946. https://doi.org/10.1021/cr030027b.
Marsh PD, Martin MV. Oral Microbiology. 5th ed. London: Butterworth Heinemann; 2010.
Allaker RP, Douglas CWI. Non-conventional therapeutics for oral infections. Virulence. 2015;6(3):196–207. https://doi.org/10.4161/21505594.2014.983783.
Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34(2):103–110. https://doi.org/10.1016/j.ijantimicag.2009.01.017.
Hannig M, Kriener L, Hoth-Hannig W, Becker-Willinger C, Schmidt H. Influence of nanocomposite surface coating on biofilm formation in situ. J Nanosci Nanotechnol. 2007;7(12):4642–4648. https://doi.org/10.1166/jnn.2007.18117.
Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295(1–2):235–245. https://doi.org/10.1016/j.ijpharm.2005.01.042.
Rinaudo M. Chitin and chitosan: Properties and applications. Prog Polym Sci. 2006;31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.
Ibrahim HM, Reda MM, Klingner A. Preparation and characterization of green carboxymethylchitosan (CMCS)-polyvinyl alcohol (PVA) electrospun nanofibers containing gold nanoparticles (AuNPs). Int J Biol Macromol. 2020;151:821–829. https://doi.org/10.1016/j.ijbiomac.2020.02.174.
Li HP, Qin L, Wang ZD, et al. Synthesis and characterization of ramose tetralactosyl-lysyl-chitosan-5-fluorouracil and its in vitro release. Res Chem Intermed. 2012;38(6):1421–1429. https://doi.org/10.1007/s11164-011-0473-x.
Borges O, Tavares J, de Sousa A, Borchard G, Junginger HE, Cordeiro-da-Silva A. Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. Eur J Pharm Sci. 2007;32(4–5):278–290. https://doi.org/10.1016/j.ejps.2007.08.005.
Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size, and morphological properties of chitosan-TPP nanoparticles. Colloids Surf B Biointerfaces. 2005;44(2–3):65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001.
Stanić V, Dimitrijević S, Antić-Stanković J, Mitrić M, Jokić B, Plećaš IB, Raičević S. Synthesis, characterization, and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089. https://doi.org/10.1016/j.apsusc.2010.03.124.
Martinez-Gutierrez F, Olive PL, Banuelos A, Orrantia E, Nino-Martinez N, Martinez-Castanon GA, Ruiz F. Evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010;6(5):681–688. https://doi.org/10.1016/j.nano.2010.02.001.
Lellouche J, Kahana E, Elias S, Gedanken A, Banin E. Antibiofilm activity of nanosized magnesium fluoride. Biomaterials. 2009;30(30):5969–5978. https://doi.org/10.1016/j.biomaterials.2009.07.012.
Jasem AJ, Mahmood MA. Preparation and characterization of amoxicillin-loaded chitosan nanoparticles. J Emerg Med Trauma Acute Care. 2023;2023(3):10. https://doi.org/10.5339/jemtac.2023.midc.10.
Mosaad RM, Alhalafi MH, Emam EA, Ibrahim MA, Ibrahim H. Enhancement of antimicrobial and dyeing properties of cellulosic fabrics via chitosan nanoparticles. Polymers (Basel). 2022;14(19):4211. https://doi.org/10.3390/polym14194211.
Matalqah SM, Aiedeh K, Mhaidat NM, Alzoubi KH, Bustanji Y, Hamad I. Chitosan nanoparticles as a novel drug delivery system: A review article. Curr Drug Targets. 2020;21(15):1613–1624. https://doi.org/10.2174/1389450121666200711172536.
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28. https://doi.org/10.1016/j.jconrel.2004.08.010.
Kumar GV, Su CH, Velusamy P. Kanamycin-chitosan nanoparticles to improve antibacterial activity against pathogens. J Taiwan Inst Chem Eng. 2016;65:574–583. https://doi.org/10.1016/j.jtice.2016.04.008.
Herdiana Y, Wathoni N, Shamsuddin S, Muchtaridi M. Cytotoxicity enhancement with chitosan delivery of α-Mangostin. Polymers (Basel). 2022;14(15):3139. https://doi.org/10.3390/polym14153139.
Iyakulawat P, Praphairaksit N, Chantarasiri N, Muangsin N. Preparation and evaluation of chitosan/carrageenan beads for controlled release of sodium diclofenac. AAPS PharmSciTech. 2007;8(4):E97. https://doi.org/10.1208/pt0804097.
Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine. 2010;6(1):58–63. https://doi.org/10.1016/j.nano.2009.04.007.
Jayakumar R, Nwe N, Tokura S, Tamura H. Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol. 2007;40(3):175–181. https://doi.org/10.1016/j.ijbiomac.2006.06.021.
Yang TC, Chou CC, Li CF. Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int J Food Microbiol. 2005;97(3):237–245. https://doi.org/10.1016/S0168-1605(03)00083-7.
Li Z, Zhuang X, Liu X, Guan Y, Yao F. Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N,N-dimethylacetamide solution. Polymer. 2002;43(5):1541–1547. https://doi.org/10.1016/S0032-3861(01)00699-1.
Je JY, Cho YS, Kim SK. Cytotoxic activities of water-soluble chitosan derivatives with different degree of deacetylation. Bioorg Med Chem Lett. 2006;16(8):2122–2126. https://doi.org/10.1016/j.bmcl.2006.01.060.
Qi L, Xu Z, Jiang X, Li Y, Wang M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett. 2005;15(5):1397–1399. https://doi.org/10.1016/j.bmcl.2005.01.010.
Ready D, Lancaster H, Qureshi F, Bedi R, Mullany P, Wilson M. Effect of amoxicillin use on oral microbiota in young children. Antimicrob Agents Chemother. 2004;48(8):2883–2887. https://doi.org/10.1128/AAC.48.8.2883-2887.2004.
Zhang H, Oh M, Allen C, Kumacheva E. Monodisperse chitosan nanoparticles for mucosal drug delivery. Biomacromolecules. 2004;5(6):2461–2468. https://doi.org/10.1021/bm0496211.
Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 2012;90:21–27. https://doi.org/10.1016/j.colsurfb.2011.09.042.
Biswaro LS, da Costa Sousa MG, Rezende TMB, Dias SC, Franco OL. Antimicrobial peptides and nanotechnology: Recent advances and challenges. Front Microbiol. 2018;9:855. https://doi.org/10.3389/fmicb.2018.00855.
Sun B, Zhang M, Shen J, He Z, Fatehi P, Ni Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem. 2019;26(14):2485–2501. https://doi.org/10.2174/0929867324666170705143308.
Amin MK, Boateng JS. Comparison and process optimization of PLGA, chitosan and silica nanoparticles for potential oral vaccine delivery. Ther Deliv. 2019;10(8):493–514. https://doi.org/10.4155/tde-2019-0038.
Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2–11. https://doi.org/10.4103/2230-973X.96920.
Mohammed MA, Syeda JTM, Wasan KM, Wasan EK. An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 2017;9(4):53. https://doi.org/10.3390/pharmaceutics9040053.
Lee ST, Mi FL, Shen YJ, Shyu SS. Equilibrium and kinetic studies of copper(II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer. 2001;42(5):1879–1892. https://doi.org/10.1016/S0032-3861(00)00402-X.
Gan Q, Wang T, Cochrane C, McCarron P. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids Surf B Biointerfaces. 2005;44(2–3):65–73. https://doi.org/10.1016/j.colsurfb.2005.06.001.
Tsai ML, Chen RH, Bai SW, Chen WY. The storage stability of chitosan/tripolyphosphate nanoparticles in a phosphate buffer. Carbohydr Polym. 2011;84(2):756–761. https://doi.org/10.1016/j.carbpol.2010.04.040.
Bayat A, Larijani B, Ahmadian S, Junginger HE, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and its quaternized derivatives. Nanomedicine. 2008;4(2):115–120. https://doi.org/10.1016/j.nano.2008.01.003.
Vega E, Egea MA, Valls O, Espina M, García ML. Flurbiprofen loaded biodegradable nanoparticles for ophthalmic administration. J Pharm Sci. 2006;95(11):2393–2405. https://doi.org/10.1002/jps.20685.
Chakraborty SP, Sahu SK, Pramanik P, Roy S. In vitro antimicrobial activity of nanoconjugated vancomycin against drug-resistant Staphylococcus aureus. Int J Pharm. 2012;436(1–2):659–676. https://doi.org/10.1016/j.ijpharm.2012.07.033.
Arulmozhi V, Pandian K, Mirunalini S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf B Biointerfaces. 2013;110:313–320. https://doi.org/10.1016/j.colsurfb.2013.03.039.
Takahashi T, Imai M, Suzuki I, Sawai J. Growth inhibitory effect on bacteria of chitosan membranes regulated by the deacetylation degree. Biochem Eng J. 2008;40(3):485–491. https://doi.org/10.1016/j.bej.2007.11.021.
Fathallh AA, Mahmood MA. The estimation of the viable count of mutans streptococcus in waterpipe smokers and cigarette smokers. J Bagh Coll Dent. 2021;33(3):23–29. https://doi.org/10.26477/jbcd.v33i3.2950.
Al-Bazaz FA, Radhi NJ, Abed Hubeatir K. Sensitivity of Streptococcus mutans to selected nanoparticles (in vitro study). J Bagh Coll Dent. 2022;34(1):20–27. https://doi.org/10.26477/jbcd.v34i1.3102.
Ibrahim SW, Al-Nakkash WA. Mechanical evaluation of nano hydroxyapatite, chitosan, and collagen composite coating compared with nano hydroxyapatite coating on commercially pure titanium dental implant. J Bagh Coll Dent. 2017;29(2):42–48. https://doi.org/10.12816/0038748.
AI-Mizraqchi AS. Effect of mouth rinse of chlorhexidine on the occurrence of the cariogenic microorganisms. IHJPAS. 2017;21(4):31–34. https://jih.uobaghdad.edu.iq/index.php/j/article/view/1426.
Abdul Sattar BA, Hassan A, Hassan A. In vitro antimicrobial activity of Thymus vulgaris, Origanum vulgare and Rosmarinus officinalis against dental caries pathogens. IHJPAS. 2017;25(2):1–8. https://jih.uobaghdad.edu.iq/index.php/j/article/view/610.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms