Evaluation of Some Efflux Pump Genes in Pseudomonas aeruginosa and their Relation to Antibiotic Resistance

Main Article Content

Roaa Abd Al-rahman Abdulla
Rasmiya Abd Abo-risha

Abstract

In this study, all 100 samples were collected from people suffering from burns, wounds, ear infections, blood, sputum samples, and urine from both genders. The specimens were collected from medical city hospitals during the period between September 2022 and January 2023. The results of culture and biochemical tests showed that 50 isolates were P. aeruginosa. The VITEK2 compact system confirmed the identity of 35 isolates. A VITEK2 compact system tested 35 strains of Pseudomonas aeruginosa for drug susceptibility. These strains were resistant to Cefotaxime 25 (71.43%), Ceftazidime 25 (71.43%), Cefepime 25 (71.43%), Imipenem 22 (62.86%), Meropenem 23 (65.71%), 22 (62.86%), Gentamicin 22 (62.86%), Ciprofloxacin 18 (51.43%), and Norfloxacin 21 (60%). The VITEK2 compact system used regular PCR to identify the efflux pump genes (mexT and mexF) in 35 isolates. The results indicated that mexT was positive in 20 isolates (57.1%), mexF was positive in 18 isolates (51.4%), and mexF was negative in 17 isolates (48.6%).

Article Details

How to Cite
[1]
Abdulla, R.A.A.- rahman . and Abo-risha, R.A. 2024. Evaluation of Some Efflux Pump Genes in Pseudomonas aeruginosa and their Relation to Antibiotic Resistance. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 1–8. DOI:https://doi.org/10.30526/37.4.3502.
Section
Biology

Publication Dates

Received

2023-05-18

Accepted

2023-06-19

Published Online First

2024-10-20

References

Pang, Z; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeurginosa mechanisms and alternative therapeutic strategies. Biotechnology Advances 2019, 37(1), 177-192. https://doi.org/10.1016/j.biotechadv.2018.11.013.

Diggle, P.S.; Whiteley, M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology 2020, 166(1), 30-33.: https://doi.org/10.1099%2Fmic.0.000860.

Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy 2022, 7(1), 199. https://doi.org/10.1038/s41392-022-01056-1.

Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023, 12(1), 199. https://doi.org/10.3390/cells12010199.

Poole K. Pseudomonas aeruginosa: resistance to the max. Frontiers in Microbiology 2011, 2, 65. https://doi.org/10.3389/fmicb.2011.00065.

Hancock, R. E.W.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resistance Updates 2000, 3(4), 247-255. https://doi.org/10.1054/drup.2000.0152.

Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews: MMBR 2010, 74(3), 417–433. https://doi.org/10.1128/MMBR.00016-10.

Tseng, B.S.; Zhang, W.; Harrison, J.J.; Quach, T.P.; Song, J.L.; Penterman, J.; Singh, P.K.; Chopp, D.L.; Packman, A.I.; Parsek, M.R. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environmental Microbiology 2013, 15(10), 2865–2878. https://doi.org/10.1111/1462-2920.12155.

Wu, W.; Huang, J.; Xu, Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microbial Biotechnology 2024, 17(5), e14487. https://doi.org/10.1111/1751-7915.14487.

Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F. F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. International Journal of Molecular Sciences 2022, 23(24), 15779. https://doi.org/10.3390/ijms232415779.

Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel, Switzerland) 2023, 12(8), 1304. https://doi.org/10.3390/antibiotics12081304.

Sewunet, T.; Demissie, Y.; Mihret, A.; Abebe, T. Bacterial profile and antimicrobial susceptibility pattern of isolates among burn patients at Yekatit 12 Hospital Burn Center, Addis Ababa, Ethiopia. Ethiopian Journal of Health Sciences 2013, 23(3), 209–216. https://doi.org/10.4314/ejhs.v23i3.3.

Castanheira, M.; Duncan, L.R.; Mendes, R.E.; Sader, H. S.; Shortridge, D. Activity of ceftolozane-tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae isolates collected from respiratory tract specimens of hospitalized patients in the United States during 2013 to 2015. Antimicrobial Agents and Chemotherapy 2018, 62(3), e02125-02117. https://doi.org/10.1128/aac.02125-17.

Sheikh, A.F.; Ghanbari, F.; Afzali, M.; Shahin, M. Isolation of oxidase-negative Pseudomonas aeruginosa from various specimens. Iranian Journal of Public Health 2020. https://doi.org/10.18502/ijph.v49i6.3376.

Reiner, K. Catalase test protocol. American Society for Microbiology 2010, 1(1), 1-9.

Gera, K.; McIver, K.S. Laboratory growth and maintenance of Streptococcus pyogenes (the Group A Streptococcus, GAS). Current Protocols in Microbiology 2013, 30, 9D.2.1–9D.2.13. https://doi.org/10.1002/9780471729259.mc09d02s30.

Rashad, F.F.; Obaid, S.S.; Al-kadhi, N.A. Association of Multidrug Resistance With Biofilm Formation in Pseudomonas aeruginosa Isolated from Clinical Samples in Kirkuk City. NTU Journal of Pure Sciences 2022, 1(4), 10-19. https://doi.org/10.56286/ntujps.v1i4.342.

Nițescu, B.; Pițigoi, D.; Tălăpan, D.; Nițescu, M.; Aramă, S.Ș.; Pavel, B.; Streinu-Cercel, A.; Rafila, A.; Aramă, V. Etiology and Multi-Drug Resistant Profile of Bacterial Infections in Severe Burn Patients, Romania 2018-2022. Medicina (Kaunas, Lithuania) 2023, 59(6), 1143. https://doi.org/10.3390/medicina59061143.

Jung, B.; Hoilat, G.J. MacConkey Medium. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024, Available from: https://www.ncbi.nlm.nih.gov/books/NBK557394/.

Rawi, N.N.; Ramzi, M.M.; Rahman, N.I.A.; Ariffin, F.; Saidin, J.; Bhubalan, K.; Mazlan, N.W.; Zin, N.A.M.; Siong, J.Y.F.; Bakar, K.; Azemi, A.K.; Ismail, N. Antifouling Potential of Ethyl Acetate Extract of Marine Bacteria Pseudomonas aeruginosa Strain RLimb. Life 2023, 13(3), 802. https://doi.org/10.3390/life13030802.

Aditi, F.Y.; Rahman, S.S.; Hossain, M.M. A Study on the Microbiological Status of Mineral Drinking Water. The Open Microbiology Journal 2017, 11, 31–44. https://doi.org/10.2174/1874285801711010031.

Sarah, N.L.; Zainab, F. M. Activity of Marticaria chamomilla crude and total flavonoid extracts as anti-virulence factor for clinically isolated Pseudomonas aeruginosa. Iraqi Journal of Agricultural Sciences 2023, 54(1), 59-69.‏ https://doi.org/10.36103/ijas.v54i1.1676.

Mohammed, S.J.; Al-Musawi, A. T.; Al-Fraji, A.S.; Kareem, H.S. Comparison of three culture media in assessing the sensitivity of antibiotics to common foodborne microorganisms. Journal of Medicine and Life 2022, 15(5), 645–649. https://doi.org/10.25122/jml-2021-0404.

Poursina, S.; Ahmadi, M.; Fazeli, F.; Ariaii, P. Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. Veterinary Medicine and Science 2023, 9(1), 315-325. https://doi.org/10.1002/vms3.1007.

Anvarinejad, M.; Japoni, A.; Rafaatpour, N.; Mardaneh, J.; Abbasi, P.; Amin Shahidi, M.; Dehyadegari, M.A.; Alipour, E. Burn Patients Infected With Metallo-Beta-Lactamase-Producing Pseudomonas aeruginosa: multidrug-Resistant Strains. Archives of Trauma Research 2014, 3(2), e18182. https://doi.org/10.5812%2Fatr.18182.

Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infectious Diseases and Therapy 2022, 11(2), 661–682. https://doi.org/10.1007/s40121-022-00591-2.

Friyah, S.H.; Rasheed, M.N. Molecular study of efflux MexX gene in Pseudomonas aeruginosa isolated from Iraqi patients. Iraqi Journal of Biotechnology 2018, 17, 3.‏

Yaseen, N.N.; Ahmed, D.A. Detection of mexB Multidrug Efflux Gene in Some Local Isolates of Pseudomonas aeruginosa. Iraqi Journal of Science 2023, 64(1), 111-118. https://doi.org/10.24996/ijs.2023.64.1.11.

Ugwuanyi, F.C.; Ajayi, A.; Ojo, D.A.; Adeleye, A.I.; Smith, S.I. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Annals of Clinical Microbiology and Antimicrobials 2021, 20, 1-7.‏ https://doi.org/10.1186/s12941-021-00417-y.

Abdel-Salam, S.; Ahmed, Y.M.; Abdel Hamid, D. H.; Fathy, F.E.Z. Association between MexA/MexB efflux-pump genes with the resistance pattern among Pseudomonas aeruginosa isolates from Ain Shams University Hospitals. Microbes and Infectious Diseases 2023, 4(1), 160-167.‏ https://doi.org/10.21608/mid.2022.165762.1389. ‏